1 条题解
-
0
自动搬运
来自洛谷,原作者为

iyaang
不因过往而自卑搬运于
2025-08-24 22:48:26,当前版本为作者最后更新于2023-08-02 17:02:41,作者可能在搬运后再次修改,您可在原文处查看最新版自动搬运只会搬运当前题目点赞数最高的题解,您可前往洛谷题解查看更多
以下是正文
数据有点水啊,貌似矩阵大小最大只有 ,这导致一堆 bitset 乱搞或者暴力啥的无聊解法能过,这里就不多说了,快进到正题。
二维通配符匹配。
首先根据 Rabin Karp 给每种颜色随机一个权值做哈希,特别的,令通配符(也就是 )的权值为 。下文称模式串为 ,匹配串为 。接下来要做的就是设计匹配函数和卷积。
将两个矩阵拍到一维上,套路性的翻转 矩阵后相乘。这里有一个小技巧,为了使 和 能够对应上位置,我们在 的前 行末尾补 ,补到长度为 。具体的,可以有例子:
$$\begin{aligned} & c_q = 4,A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ \end{bmatrix} \\ & \sf A = \begin{bmatrix} 1 & 2 & 3 & 0 & 4 & 5 & 6 \end{bmatrix} \\ & \sf A' = \begin{bmatrix} 6 & 5 & 4 & 0 & 3 & 2 & 1 \end{bmatrix} \\ & A' = \begin{bmatrix} 6 & 5 & 4 \\ 3 & 2 & 1 \\ \end{bmatrix} \\ \end{aligned} $$注意到这样就实现了 。此时我们要求匹配函数:
$$\begin{aligned} P_{x,y} &= \sum_{1 \leq i < r_p} \sum_{1 \leq j < c_p} A_{i,j} B_{x + i - 1,y + i - 1} \\ &= \sum_{1 \leq i < r_p} \sum_{1 \leq j < c_p} A_{r_p - i + 1,c_p - i + 1}' B_{x + i - 1,y + i - 1} \end{aligned} $$注意到下标里的东西加起来正好是 ,然后就可以愉快的卷积求 了。
令 $K = \sum_{i = 1}^{r_p} \sum_{j = 1}^{c_p} A_{i,j}^2$,注意到匹配串中不存在通配符,模式串中的通配符 不管遇到什么颜色乘出来这一位都是 ,能与 中所算的一项对应起来。所以如果存在 ,则说明在 这个位置匹配上了。注意最后统计答案的时候再判一下位置是否合法就好了,这是简单的。综上我们做到了 ,其中 。个人采用了 NTT 实现,再不要脸的推一波我的多项式板子,跑的非常优秀。
#include<bits/stdc++.h> #define ld long double #define ui unsigned int #define ull unsigned long long #define int long long #define eb emplace_back #define pb pop_back #define ins insert #define mp make_pair #define pii pair<int,int> #define fi first #define se second #define power(x) ((x)*(x)) #define gcd(x,y) (__gcd((x),(y))) #define lcm(x,y) ((x)*(y)/gcd((x),(y))) #define lg(x,y) (__lg((x),(y))) #define y1 LJBL using namespace std; namespace FastIO { template<typename T=int> inline T read() { T s=0,w=1; char c=getchar(); while(!isdigit(c)) {if(c=='-') w=-1; c=getchar();} while(isdigit(c)) s=(s*10)+(c^48),c=getchar(); return s*w; } template<typename T> inline void read(T &s) { s=0; int w=1; char c=getchar(); while(!isdigit(c)) {if(c=='-') w=-1; c=getchar();} while(isdigit(c)) s=(s*10)+(c^48),c=getchar(); s=s*w; } template<typename T,typename... Args> inline void read(T &x,Args &...args) { read(x),read(args...); } template<typename T> inline void write(T x,char ch) { if(x<0) x=-x,putchar('-'); static char stk[25]; int top=0; do {stk[top++]=x%10+'0',x/=10;} while(x); while(top) putchar(stk[--top]); if(ch!='~') putchar(ch); return; } } using namespace FastIO; inline void file() { freopen(".in","r",stdin); freopen(".out","w",stdout); return; } bool Mbe; namespace LgxTpre { static const int MAX=4000010; static const int inf=2147483647; static const int INF=4557430888798830399; static const int mod=1e9+7; static const int bas=131; namespace Poly { namespace MInt { static const int Mod=998244353; template<const int Mod> struct ModInt { int x; ModInt(int X=0):x(X) {} inline ModInt operator = (int &T) {*this.x=T; return *this;} inline ModInt operator = (const ModInt &T) {this->x=T.x; return *this;} inline friend ModInt operator + (ModInt a,ModInt b) {return a.x+b.x>=Mod?a.x+b.x-Mod:a.x+b.x;} inline friend ModInt operator - (ModInt a,ModInt b) {return a.x-b.x<0?a.x-b.x+Mod:a.x-b.x;} inline friend ModInt operator * (ModInt a,ModInt b) {return a.x*b.x%Mod;} inline friend ModInt operator ^ (ModInt a,int b) {ModInt res=1; while(b) {if(b&1) res=res*a; a=a*a; b>>=1;} return res;} inline friend ModInt operator / (ModInt a,ModInt b) {return a*(b^(Mod-2));} inline ModInt operator += (const ModInt &T) {*this=*this+T; return *this;} inline ModInt operator -= (const ModInt &T) {*this=*this-T; return *this;} inline ModInt operator *= (const ModInt &T) {*this=*this*T; return *this;} inline ModInt operator ^= (const ModInt &T) {*this=*this^T; return *this;} inline ModInt operator /= (const ModInt &T) {*this=*this/T; return *this;} template<typename T> inline friend ModInt operator + (ModInt a,T x) {return a+ModInt(x);} template<typename T> inline friend ModInt operator - (ModInt a,T x) {return a-ModInt(x);} template<typename T> inline friend ModInt operator * (ModInt a,T x) {return a*ModInt(x);} template<typename T> inline friend ModInt operator / (ModInt a,T x) {return a/ModInt(x);} inline friend bool operator == (ModInt a,ModInt b) {return a.x==b.x;} inline friend bool operator != (ModInt a,ModInt b) {return a.x!=b.x;} inline friend bool operator > (ModInt a,ModInt b) {return a.x>b.x;} inline friend bool operator < (ModInt a,ModInt b) {return a.x<b.x;} inline friend bool operator >= (ModInt a,ModInt b) {return a>b||a==b;} inline friend bool operator <= (ModInt a,ModInt b) {return a<b||a==b;} template<typename T> inline friend bool operator == (ModInt a,T b) {return a==ModInt(b);} template<typename T> inline friend bool operator != (ModInt a,T b) {return a!=ModInt(b);} template<typename T> inline friend bool operator > (ModInt a,T b) {return a>ModInt(b);} template<typename T> inline friend bool operator < (ModInt a,T b) {return a<ModInt(b);} template<typename T> inline friend bool operator >= (ModInt a,T b) {return a>=ModInt(b);} template<typename T> inline friend bool operator <= (ModInt a,T b) {return a<=ModInt(b);} inline bool operator ! () {return !x;} inline ModInt operator - () {return x?Mod-x:0;} }; } using namespace MInt; static const ModInt<Mod> gn=332748118,gni=3,ZERO=0,ONE=1; struct poly { vector<ModInt<Mod>> a; inline ModInt<Mod> &operator [] (int i) {return a[i];} inline poly operator = (const poly &T) {this->a=T.a; return *this;} inline int size() {return a.size();} inline ModInt<Mod> back() {return a.back();} inline void resize(int N) {return a.resize(N),void();} inline void reverse() {return std::reverse(a.begin(),a.end());} inline void pin(int x) {return a.emplace_back(ModInt<Mod>(x)),void();} inline void pout() {for(auto it:a) write(it.x,' ');} }; static const int GT=21,GR=31; ModInt<Mod> omega[MAX]; poly zero,one; inline int Sup(int N) {int K=1; while(K<N) K<<=1; return K;} inline void Prework(int N) { zero.a.emplace_back(ZERO),one.a.emplace_back(ONE); int K=1; while((1<<K)<N) ++K; K=min(K-1,21ll); omega[0]=1,omega[1<<K]=(ModInt<Mod>(GR))^(1<<(GT-K)); for(int i=K;i>=1;--i) omega[1<<(i-1)]=omega[1<<i]*omega[1<<i]; for(int i=1;i<(1<<K);++i) omega[i]=omega[i&(i-1)]*omega[i&(-i)]; } inline void NTT(poly &F,int typ) { ModInt<Mod> U,V; int N=F.size(); if(typ==1) { for(int mid=N>>1;mid>=1;mid>>=1) for(int i=0,k=0;i<N;i+=mid<<1,++k) for(int j=0;j<mid;++j) U=F[i+j],V=F[i+j+mid]*omega[k], F[i+j]=U+V,F[i+j+mid]=U-V; } if(typ==-1) { for(int mid=1;mid<N;mid<<=1) for(int i=0,k=0;i<N;i+=mid<<1,++k) for(int j=0;j<mid;++j) U=F[i+j],V=F[i+j+mid], F[i+j]=U+V,F[i+j+mid]=(U-V)*omega[k]; ModInt<Mod> Ninv=ONE/N; for(int i=0;i<N;++i) F[i]*=Ninv; reverse(F.a.begin()+1,F.a.end()); } } inline poly operator * (poly a,poly b) { int K=a.size()+b.size()-1,N=Sup(K); a.resize(N),b.resize(N); NTT(a,1),NTT(b,1); for(int i=0;i<N;++i) a[i]*=b[i]; NTT(a,-1); a.resize(K); return a; } } using namespace Poly; int rp,cp,rq,cq; int tag[MAX],cnt=1; inline void lmy_forever() { Poly::Prework(4000000); read(rp,cp); vector a(rp,vector<int>(cp)); for(int i=0;i<rp;++i) for(int j=0;j<cp;++j) read(a[i][j]); read(rq,cq); vector b(rq,vector<int>(cq)); for(int i=0;i<rq;++i) for(int j=0;j<cq;++j) read(b[i][j]); auto random=[&](int l,int r)->int { static mt19937_64 sd(20070707); static uniform_int_distribution<int> range(l,r); return range(sd); }; for(int i=1;i<=rq*cq;++i) tag[i]=1; vector<int> col(110); for(int i=1;i<=100;++i) col[i]=random(1,Mod-1); poly A,B,C; ModInt<Mod> tmp; for(int i=0;i<rp;++i) {int j=0; for(;j<cp;++j) A.pin(col[a[i][j]]),tmp+=A.back()*A.back(); if(i<rp-1) for(;j<cq;++j) A.pin(0);} for(int i=0;i<rq;++i) for(int j=0;j<cq;++j) B.pin(col[b[i][j]]); A.reverse(),C=A*B; for(int i=0;i<B.size()-A.size()+1;++i) if(C[A.size()+i-1]!=tmp) tag[i+1]=0; vector<pii> ans; for(int i=1;i<=rq;++i) for(int j=1;j<=cq;++j,++cnt) if(i+rp-1<=rq&&j+cp-1<=cq&&tag[cnt]) ans.eb(mp(i,j)); write(ans.size(),'\n'); for(auto [x,y]:ans) write(x,' '),write(y,'\n'); return; } } bool Med; signed main() { // file(); fprintf(stderr,"%.3lf MB\n",abs(&Med-&Mbe)/1048576.0); int Tbe=clock(); LgxTpre::lmy_forever(); int Ted=clock(); cerr<<1e3*(Ted-Tbe)/CLOCKS_PER_SEC<<" ms\n"; return (0-0); }
- 1
信息
- ID
- 6106
- 时间
- 6000ms
- 内存
- 256MiB
- 难度
- 6
- 标签
- 递交数
- 0
- 已通过
- 0
- 上传者