1 条题解
-
0
自动搬运
来自洛谷,原作者为

XuYueming
没拿省一不改签搬运于
2025-08-24 22:44:22,当前版本为作者最后更新于2024-04-24 19:56:55,作者可能在搬运后再次修改,您可在原文处查看最新版自动搬运只会搬运当前题目点赞数最高的题解,您可前往洛谷题解查看更多
以下是正文
前言
又是随机游走?洛谷题解宽度太窄了,所以更好的阅读体验。
题目分析
看到加边,可能性太多了。但是为了让步数最大化,我们可以贪心地想,肯定要往前面连,而且越前面要走的期望步数肯定越大。并且,我们不会浪费边在终点上。于是,题目转变成了 连向起点 连若干条边,使得随机游走到终点的期望步数最大。
那要如何分配这 条边到 个点呢?考虑假设已知第 个点向 连了 条边,求期望步数。设 为到了 ,还要期望多少步走到终点,显然 。开始喜闻乐见的推式子环节:
$$ \large f_i = \cfrac{1}{d_i + 1}f_{i+1} + \cfrac{d_i}{d_i + 1}f_1+1 $$从 向前递推。
$$ \begin{aligned} \large f_{n-1} &= \cfrac{1}{d_{n-1} + 1}f_{n-1+1} + \cfrac{d_{n-1}}{d_{n-1} + 1}f_1+1 \\ &= \cfrac{d_{n-1}}{d_{n-1} + 1}f_1+1 \end{aligned} $$推到 。
$$ \begin{aligned} \large f_{n-2} &= \cfrac{1}{d_{n-2} + 1}f_{n-1} + \cfrac{d_{n-2}}{d_{n-2} + 1}f_1 + 1 \\ &= \cfrac{1}{d_{n-2} + 1} \cdot \left(\cfrac{d_{n-1}}{d_{n-1} + 1}f_1 + 1\right) + \cfrac{d_{n-2}}{d_{n-2} + 1}f_1 + 1\\ &= \cfrac{1}{d_{n-2} + 1} \cdot \cfrac{d_{n-1}}{d_{n-1} + 1}f_1 + \cfrac{d_{n-2}}{d_{n-2} + 1}f_1 + \cfrac{1}{d_{n-2} + 1} + 1 \\ &= \cfrac{d_{n-1} + d_{n-2} \cdot (d_{n-1}+1)}{(d_{n-2} + 1) \cdot (d_{n-1} + 1)} f_1 + \cfrac{(d_{n - 2} + 1) + 1}{d_{n-2} + 1} \\ &= \cfrac{(d_{n-2} + 1) \cdot (d_{n-1}+1) - 1}{(d_{n-2} + 1) \cdot (d_{n-1} + 1)} f_1 + \cfrac{(d_{n - 2} + 1) + 1}{d_{n-2} + 1} \end{aligned} $$再推到 。
$$ \begin{aligned} f_{n-3} =& \cfrac{1}{d_{n-3} + 1}f_{n-2} + \cfrac{d_{n-3}}{d_{n-3} + 1}f_1+1 \\ =& {\scriptsize \cfrac{1}{d_{n-3} + 1}\left(\cfrac{(d_{n-2} + 1) \cdot (d_{n-1}+1) - 1}{(d_{n-2} + 1) \cdot (d_{n-1} + 1)} f_1 + \cfrac{(d_{n - 2} + 1) + 1}{d_{n-2} + 1}\right) + \cfrac{d_{n-3}}{d_{n-3} + 1}f_1+1} \\ =& {\scriptsize \cfrac{(d_{n-2} + 1) \cdot (d_{n-1}+1) - 1}{(d_{n-3} + 1) \cdot (d_{n-2} + 1) \cdot (d_{n-1} + 1)} f_1 + \cfrac{(d_{n - 2} + 1) + 1}{(d_{n-3} + 1) \cdot (d_{n-2} + 1)} + \cfrac{d_{n-3}}{d_{n-3} + 1}f_1+1} \\ =& {\scriptsize \cfrac{d_{n-3} \cdot (d_{n-2} + 1) \cdot (d_{n-1} + 1) + (d_{n-2} + 1) \cdot (d_{n-1}+1) - 1}{(d_{n-3} + 1) \cdot (d_{n-2} + 1) \cdot (d_{n-1} + 1)} f_1 + } \\ & {\scriptsize \cfrac{(d_{n-3} + 1) \cdot (d_{n-2}+1) + (d_{n - 2} + 1) + 1}{(d_{n-3} + 1) \cdot (d_{n-2}+1)}} \\ =& {\scriptsize \cfrac{(d_{n-3} + 1) \cdot (d_{n-2} + 1) \cdot (d_{n-1} + 1) - 1}{(d_{n-3} + 1) \cdot (d_{n-2} + 1) \cdot (d_{n-1} + 1)} f_1 + \cfrac{(d_{n-3} + 1) \cdot (d_{n-2}+1) + (d_{n - 2} + 1) + 1}{(d_{n-3} + 1) \cdot (d_{n-2}+1)}} \end{aligned} $$找到一些规律,尝试去证明。假设对于 满足:
$$ \large f_{i+1} = \cfrac{\prod \limits _ {j=i+1}^{n-1} (d_j+1)-1}{\prod \limits _ {j=i+1}^{n-1} (d_j+1)}f_1 + \cfrac{\sum \limits _ {j=i+1} ^ {n-2} \prod \limits _ {k=j} ^ {n-2}(d_k+1) + 1}{\prod \limits _ {j=i+1} ^ {n-2} (d_j+1)} $$显然该式对于 成立。尝试用归纳法推到 。
$$ \begin{aligned} f_i &= {\scriptsize \cfrac{1}{d_i + 1}\left(\cfrac{\prod \limits _ {j=i+1}^{n-1} (d_j+1)-1}{\prod \limits _ {j=i+1}^{n-1} (d_j+1)}f_1 + \cfrac{\sum \limits _ {j=i+1} ^ {n-2} \prod \limits _ {k=j} ^ {n-2}(d_k+1) + 1}{\prod \limits _ {j=i+1} ^ {n-2} (d_j+1)}\right) + \cfrac{d_i}{d_i + 1}f_1+1 } \\ &= {\scriptsize \cfrac{\prod \limits _ {j=i+1}^{n-1} (d_j+1)-1}{\prod \limits _ {j=i}^{n-1} (d_j+1)}f_1 + \cfrac{\sum \limits _ {j=i+1} ^ {n-2} \prod \limits _ {k=j} ^ {n-2}(d_k+1) + 1}{\prod \limits _ {j=i} ^ {n-2} (d_j+1)} + \cfrac{d_i}{d_i + 1}f_1+1} \\ &= {\scriptsize \cfrac{\prod \limits _ {j=i}^{n-1} (d_j+1)-1}{\prod \limits _ {j=i}^{n-1} (d_j+1)}f_1 + \cfrac{\sum \limits _ {j=i} ^ {n-2} \prod \limits _ {k=j} ^ {n-2}(d_k+1) + 1}{\prod \limits _ {j=i} ^ {n-2} (d_j+1)}} \end{aligned} $$所以上式对于所有 均成立。考虑边界,推到 的时候是一个方程。
$$ f_1 = \cfrac{\prod \limits _ {j=1}^{n-1} (d_j+1)-1}{\prod \limits _ {j=1}^{n-1} (d_j+1)}f_1 + \cfrac{\sum \limits _ {j=1} ^ {n-2} \prod \limits _ {k=j} ^ {n-2}(d_k+1) + 1}{\prod \limits _ {j=1} ^ {n-2} (d_j+1)} $$解方程。
$$ {\scriptsize \left( \prod \limits _ {j=1}^{n-1} (d_j+1) \right)f_1 = \left (\prod \limits _ {j=1}^{n-1} (d_j+1)-1\right)f_1 + (d_{n-1} + 1)\left({\sum \limits _ {j=1} ^ {n-2} \prod \limits _ {k=j} ^ {n-2}(d_k+1) + 1}\right)} $$$$ f_1 = {\sum \limits _ {j=1} ^ {n-2} \prod \limits _ {k=j} ^ {n-1}(d_k+1) + (d_{n-1}+1)} $$$$ \large f_1 = \sum \limits _ {j=1} ^ {n-1} \prod \limits _ {k=j} ^ {n-1}(d_k+1) $$于是我们可以很方便地求出期望步数,即 。但是我们还是不知道最优的 如何分配,考虑打表找规律。在此之前,我们不妨试着找一找 的性质。
首先, 一定是单调不降的。因为显然,放在后面会给更多的 提供贡献,从而使 更大。
略证:
,考虑原先的 有
$$\begin{aligned} f_1 &= \scriptsize \sum \limits _ {j=1} ^ {n-1} \prod \limits _ {k=j} ^ {n-1}(d_k+1) \\ &= \scriptsize \sum \limits _ {j=t+2} ^ {n-1} \prod \limits _ {k=j} ^ {n-1}(d_k+1) + (d_{t+1} + 1) \prod \limits _ {k=t+2} ^ {n-1}(d_k+1) + \sum \limits _ {j=1} ^ {t} \left ( (d_t + 1)(d_{t+1} + 1) \prod \limits _ {k=j} ^ {t-1}(d_k+1) \prod \limits _ {k=t+2} ^ {n-1}(d_k+1) \right ) \end{aligned} $$不妨交换 和 。
$$\begin{aligned} f_1 &= \scriptsize \sum \limits _ {j=t+2} ^ {n-1} \prod \limits _ {k=j} ^ {n-1}(d_k+1) + ({\color{red}{d_{t}}} + 1) \prod \limits _ {k=t+2} ^ {n-1}(d_k+1) + \sum \limits _ {j=1} ^ {t} \left ( ({\color{red}{d_{t+1}}} + 1)({\color{red}{d_{t}}} + 1) \prod \limits _ {k=j} ^ {t-1}(d_k+1) \prod \limits _ {k=t+2} ^ {n-1}(d_k+1) \right ) \end{aligned} $$显然,因为 ,所以交换后的 更优。我们可以不断进行这个过程,直到 有序,即单调不降, 最大。
证毕。
其次……没其次了,打表吧。
while True: n, m = map(int, input().split()) res = [0] * n ans = [0] * n maxx = 0 def dfs(now, tot, x): global maxx, ans if now == n - 1: res[n - 1] = tot tmp = 0 mul = 1 for i in range(n - 1, 0, -1): mul *= res[i] + 1 tmp += mul if tmp > maxx: maxx = tmp ans = res[::] return i = x while i * (n - now) <= tot: res[now] = i dfs(now + 1, tot - i, i) i += 1 dfs(1, m, 0) print(' '.join(map(str, ans[1:])))以上是打表程序。考虑 时,不断加边对最优 的分配造成的影响。
m = 1: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 m = 2: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 ...... m = 18: 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 m = 19: 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 m = 20: 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 ...... m = 35: 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 m = 36: 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 m = 37: 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 m = 38: 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 ...... m = 54: 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 m = 55: 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 m = 56: 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 m = 57: 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 ......发现,当 时,加边是从 开始放到 ,然后当 时,从 开始放到 ,如此往复,像是在不断从右往左往序列上刷。
感性理解,具体证明交给读者。Update on 2024.6.20 更新了进一步的证明
下证任意相邻两数之差不超过 。
证明:
,证明 后不劣。容易发现这样操作是合法的。
对于原先的 :
$$\begin{aligned} f_1 &= \sum \limits _ {j=1} ^ {n-1} \prod \limits _ {k=j} ^ {n-1}(d_k+1) \\ &= \sum \limits _ {j=t+2} ^ {n-1} \prod \limits _ {k=j} ^ {n-1}(d_k+1) + (d_{t+1} + 1) \prod \limits _ {k=t+2} ^ {n-1}(d_k+1) + \sum \limits _ {j=1} ^ {t} \left ( (d_t + 1)(d_{t+1} + 1) \prod \limits _ {k=j} ^ {t-1}(d_k+1) \prod \limits _ {k=t+2} ^ {n-1}(d_k+1) \right ) \\ &= \sum \limits _ {j=t+2} ^ {n-1} \prod \limits _ {k=j} ^ {n-1}(d_k+1) + (d_{t+1} + 1) \prod \limits _ {k=t+2} ^ {n-1}(d_k+1) + (d_t + 1)(d_{t+1} + 1) \sum \limits _ {j=1} ^ {t} \prod \limits _ {k=j} ^ {t-1}(d_k+1) \prod \limits _ {k=t+2} ^ {n-1}(d_k+1) \\ &= \sum \limits _ {j=t+2} ^ {n-1} \prod \limits _ {k=j} ^ {n-1}(d_k+1) + \left (d_{t+1} + 1 + (d_t + 1)(d_{t+1} + 1) \sum \limits _ {j=1} ^ {t} \prod \limits _ {k=j} ^ {t-1}(d_k+1) \right ) \prod \limits _ {k=t+2} ^ {n-1}(d_k+1) \end{aligned} $$后来的 ,记作 :
$$f_1' = \sum \limits _ {j=t+2} ^ {n-1} \prod \limits _ {k=j} ^ {n-1}(d_k+1) + \left (d_{t+1} + (d_t + 2)d_{t+1} \sum \limits _ {j=1} ^ {t} \prod \limits _ {k=j} ^ {t-1}(d_k+1) \right ) \prod \limits _ {k=t+2} ^ {n-1}(d_k+1) $$那么考虑作差:
$$\begin{aligned} f_1' - f_1 =& \Bigg ( \Big (d_{t+1} + (d_t + 2)d_{t+1} \sum \limits _ {j=1} ^ {t} \prod \limits _ {k=j} ^ {t-1}(d_k+1) \Big ) - \\ & \Big ( d_{t+1} + 1 + (d_t + 1)(d_{t+1} + 1) \sum \limits _ {j=1} ^ {t} \prod \limits _ {k=j} ^ {t-1}(d_k+1) \Big ) \Bigg ) \prod \limits _ {k=t+2} ^ {n-1}(d_k+1) \\ =& \Bigg ( \Big ((d_t + 2)d_{t+1} - (d_t + 1)(d_{t+1} + 1) \Big ) \sum \limits _ {j=1} ^ {t} \prod \limits _ {k=j} ^ {t-1}(d_k+1) - 1 \Bigg ) \prod \limits _ {k=t+2} ^ {n-1}(d_k+1) \\ =& \Bigg ( \Big (d_{t+1} - d_t - 1 \Big ) \sum \limits _ {j=1} ^ {t} \prod \limits _ {k=j} ^ {t-1}(d_k+1) - 1 \Bigg ) \prod \limits _ {k=t+2} ^ {n-1}(d_k+1) \\ \end{aligned} $$由于 ,所以 。考虑到 里至少有一个 ,则 $\Big (d_{t+1} - d_t - 1 \Big ) \sum \limits _ {j=1} ^ {t} \prod \limits _ {k=j} ^ {t-1}(d_k+1) \geq 1$,那么有 ,也就是 是不劣于 的。 如此操作,直至 。
有了如上证明,发现 $\forall t \in [1, n-2], d_{t+1} - d_t \in \lbrace 0, 1 \rbrace$。有了这个性质,接下来的证明最优性就简单啦。交给读者自己证明。
(中考考完再来补坑)那么,我们分别考虑两种情况即可。
情况一
当 时,,其他位置 均为 。此时有:
$$ \begin{aligned} \large f_1 &= \sum \limits _ {j=1} ^ {n-1} \prod \limits _ {k=j} ^ {n-1}([k \geq n - m] + 1) \\ &= \sum \limits _ {j=n-m} ^ {n-1} \prod \limits _ {k=j} ^ {n-1}2 + (n-m-1) \prod \limits _ {k=n-m} ^ {n-1}2 \\ &= \sum \limits _ {j=n-m} ^ {n-1} 2 ^ {n - j} + (n-m-1) 2 ^ m \\ &= 2 ^ {m + 1} - 2 + (n-m-1) 2 ^ m \\ &= 2 ^ {m + 1} - 2 ^ m - 2 + (n-m) 2 ^ m \\ &= 2 ^ m - 2 + (n-m) 2 ^ m \\ &= (n - m + 1) 2 ^ m - 2 \\ \end{aligned} $$快速幂单次 解决。
情况二
当 时,$d_1 = \left \lfloor \cfrac{m-(n-2)}{n-1} \right \rfloor$, 除去第一次刷的 ,和 次的刷完整个序列,还剩下 次从 往左刷,故 ,。然后推式子。
$$ \begin{aligned} f_1 &= \sum \limits _ {j=1} ^ {n-1} \prod \limits _ {k=j} ^ {n-1}(d_k + 1) \\ &= \prod \limits _ {k=1} ^ {n-1}(d_k + 1) + \sum \limits _ {j=2} ^ {n-1} \prod \limits _ {k=j} ^ {n-1}(d_k + 1) \\ &= {\scriptsize (d_1 + 1) ((d_1 + 1) + 1) ^ {(n - 1 - m') - 2 + 1} \cdot ((d_1 + 2) + 1) ^ {(n - 1) - (n - m') + 1} + \sum \limits _ {j=2} ^ {n-1} \prod \limits _ {k=j} ^ {n-1}(d_k + 1) } \\ &= {\scriptsize (d_1 + 1) (d_1 + 2) ^ {n - m' - 2} (d_1 + 3) ^ {m'} + \sum \limits _ {j=2} ^ {n-1} \prod \limits _ {k=j} ^ {n-1}(d_k + 1) } \\ &= {\scriptsize (d_1 + 1) (d_1 + 2) ^ {n - m' - 2} (d_1 + 3) ^ {m'} + \sum \limits _ {j=2} ^ {n-1-m'} \prod \limits _ {k=j} ^ {n-1}(d_k + 1) + \sum \limits _ {j=n-m'} ^ {n-1} \prod \limits _ {k=j} ^ {n-1}(d_k + 1) } \\ &= {\tiny (d_1 + 1) (d_1 + 2) ^ {n - m' - 2} (d_1 + 3) ^ {m'} + \sum \limits _ {j=2} ^ {n-1-m'} \left((d_1 + 2) ^ {(n-1-m') - j + 1} \cdot (d_1 + 3) ^ {m'} \right) + \sum \limits _ {j=n-m'} ^ {n-1} \prod \limits _ {k=j} ^ {n-1}(d_k + 1) } \\ &= {\tiny (d_1 + 1) (d_1 + 2) ^ {n - m' - 2} (d_1 + 3) ^ {m'} + (d_1 + 3) ^ {m'} \cdot \sum \limits _ {j=2} ^ {n-1-m'} (d_1 + 2) ^ {(n-1-m') - j + 1} + \sum \limits _ {j=n-m'} ^ {n-1} \prod \limits _ {k=j} ^ {n-1}(d_k + 1) } \\ &= {\tiny (d_1 + 1) (d_1 + 2) ^ {n - m' - 2} (d_1 + 3) ^ {m'} + (d_1 + 3) ^ {m'} \cdot \sum \limits _ {j=1} ^ {(n-1-m') - 2 + 1} (d_1 + 2) ^ j + \sum \limits _ {j=n-m'} ^ {n-1} \prod \limits _ {k=j} ^ {n-1}(d_k + 1) } \\ &= {\tiny (d_1 + 1) (d_1 + 2) ^ {n - m' - 2} (d_1 + 3) ^ {m'} + (d_1 + 3) ^ {m'} \cfrac{(d_1 + 2) ^ {n - 1 - m'} - (d_1 + 2)}{d_1 + 1} + \sum \limits _ {j=n-m'} ^ {n-1} \prod \limits _ {k=j} ^ {n-1}(d_k + 1) } \\ &= {\tiny (d_1 + 1) (d_1 + 2) ^ {n - m' - 2} (d_1 + 3) ^ {m'} + (d_1 + 3) ^ {m'} \cfrac{(d_1 + 2) ^ {n - 1 - m'} - (d_1 + 2)}{d_1 + 1} + \sum \limits _ {j=n-m'} ^ {n-1} \prod \limits _ {k=j} ^ {n-1}(d_1 + 3) } \\ &= {\tiny (d_1 + 1) (d_1 + 2) ^ {n - m' - 2} (d_1 + 3) ^ {m'} + (d_1 + 3) ^ {m'} \cfrac{(d_1 + 2) ^ {n - 1 - m'} - (d_1 + 2)}{d_1 + 1} + \sum \limits _ {j=n-m'} ^ {n-1} (d_1 + 3) ^ {n-j} } \\ &= {\tiny (d_1 + 1) (d_1 + 2) ^ {n - m' - 2} (d_1 + 3) ^ {m'} + (d_1 + 3) ^ {m'} \cfrac{(d_1 + 2) ^ {n - 1 - m'} - (d_1 + 2)}{d_1 + 1} + \sum \limits _ {j=1} ^ {m'} (d_1 + 3) ^ j } \\ &= {\tiny (d_1 + 1) (d_1 + 2) ^ {n - m' - 2} (d_1 + 3) ^ {m'} + (d_1 + 3) ^ {m'} \cfrac{(d_1 + 2) ^ {n - 1 - m'} - (d_1 + 2)}{d_1 + 1} + \cfrac{(d_1 + 3) ^ {m' + 1} - (d1 + 3)}{d_1 + 2} } \end{aligned} $$其中, 和 在上文已经算出,故该式可以在 的时间内算出。
代码
注意特判 的情况。
def fpow(a, b, mod): if b < 0: return 1 res = 1 base = a % mod while b: if b & 1: res = res * base % mod base = base * base % mod b >>= 1 return res def inv(x, mod): return fpow(x, mod - 2, mod) def main(): n, m, mod = map(int, input().split()) if n == 1: print(0) return if m < n - 1: pr = fpow(2, m, mod) print((pr * (n - m + 1) + mod - 2) % mod) return d1 = (m - (n - 2)) // (n - 1) M = m - (n - 2) - (n - 1) * d1 S1 = (d1 + 1) * fpow(d1 + 2, n - M - 2, mod) * fpow(d1 + 3, M, mod) S2 = fpow(d1 + 3, M, mod) * (fpow(d1 + 2, n - 1 - M, mod) - (d1 + 2) + mod) * inv(d1 + 1, mod) S3 = (fpow(d1 + 3, M + 1, mod) - (d1 + 3) + mod) * inv(d1 + 2, mod) S1 %= mod S2 %= mod S3 %= mod print((S1 + S2 + S3) % mod) if __name__ == '__main__': t = int(input()) for i in range(t): main()后记
用python写的目的是因为教练讲题时用python打表唤起了我的回忆?
- 1
信息
- ID
- 7786
- 时间
- 1000ms
- 内存
- 1024MiB
- 难度
- 6
- 标签
- 递交数
- 0
- 已通过
- 0
- 上传者