1 条题解

  • 0
    @ 2025-8-24 22:30:20

    自动搬运

    查看原文

    来自洛谷,原作者为

    avatar orz_z
    **

    搬运于2025-08-24 22:30:20,当前版本为作者最后更新于2022-01-18 08:57:04,作者可能在搬运后再次修改,您可在原文处查看最新版

    自动搬运只会搬运当前题目点赞数最高的题解,您可前往洛谷题解查看更多

    以下是正文


    P7486 「Stoi2031」彩虹

    令 $S(a,b)=\prod\limits_{i=1}^{a}\prod\limits_{j=1}^{b}\operatorname{lcm}(a,b)^{\operatorname{lcm}(a,b)}$。

    求:

    $$\frac{S(r,r)\times S(l-1,l-1)}{S(r,l-1)\times S(l-1,r)} $$

    不妨设 aba \leq b

    dp=tdp=t,则有:

    $$\begin{aligned} S(a,b)&=\prod\limits_{i=1}^{a}\prod\limits_{j=1}^{b}\operatorname{lcm}(a,b)^{\operatorname{lcm}(a,b)}\\ &=\prod_{i=1}^{a}\prod_{j=1}^{b}\frac{ij}{\gcd(a,b)}^{(\frac{ij}{\gcd(a,b)})}\\ &=\prod_{d=1}^{a}\prod_{i=1}^{a}\prod_{j=1}^{b}\frac{ij}{d}^{(\frac{ij}{d})[\gcd(i,j)=d]}\\ &=\prod_{d=1}^{a}\prod_{i=1}^{\lfloor\frac{a}{d}\rfloor}\prod_{j=1}^{\lfloor\frac{b}{d}\rfloor}(ijd)^{ijd[\gcd(i,j)=1]}\\ &=\prod_{d=1}^{a}\prod_{i=1}^{\lfloor\frac{a}{d}\rfloor}\prod_{j=1}^{\lfloor\frac{b}{d}\rfloor}(ijd)^{ijd\sum\limits_{p=1}^{\lfloor\frac{a}{d}\rfloor}\mu(p)[p|i][p|j]}\\ &=\prod_{d=1}^{a}\prod_{p=1}^{\lfloor\frac{a}{d}\rfloor}\prod_{i=1}^{\lfloor\frac{a}{d}\rfloor}[p|i]\prod_{j=1}^{\lfloor\frac{b}{d}\rfloor}[p|j](ijd)^{ijd\mu(p)}\\ &=\prod_{d=1}^{a}\prod_{p=1}^{\lfloor\frac{a}{d}\rfloor}\prod_{i=1}^{\lfloor\frac{a}{dp}\rfloor}\prod_{j=1}^{\lfloor\frac{b}{dp}\rfloor}(ijdp^2)^{ijdp^2\mu(p)}\\ &=\prod_{t=1}^{a}\prod_{p|t}\prod_{i=1}^{\lfloor\frac{a}{t}\rfloor}\prod_{j=1}^{\lfloor\frac{b}{t}\rfloor}(ijtp)^{ijtp\mu(p)}\\ \end{aligned} $$

    s(x)=i=1xi=x(x+1)2s(x)=\sum\limits_{i=1}^{x}i=\frac{x(x+1)}{2}f(x)=i=1xiif(x)=\prod\limits_{i=1}^{x}i^i,则有:

    $$\prod_{i=1}^{n}\prod_{j=1}^{m}(ij)^{ij}=f(n)^{s(m)}\times f(m)^{s(n)} $$

    令其为 G(n,m)G(n,m)

    另有:

    $$\prod_{i=1}^{n}\prod_{j=1}^{m}(tp)^{ij}=(tp)^{s(n)\times S(m)} $$

    带回原式有:

    $$\prod_{t=1}^{a}\left( \prod_{p|t}\left( G(\lfloor\frac{a}{t}\rfloor,\lfloor\frac{b}{t}\rfloor) \times (tp)^{s(\lfloor\frac{a}{t}\rfloor)\times s(\lfloor\frac{b}{t}\rfloor)} \right)^{p\mu(p)} \right)^{t} $$

    另 $h(x)=\sum\limits_{d|x}d\mu(d),y(x)=\prod\limits_{d|x}d^{d\mu(d)}$,则有:

    $$\prod_{t=1}^{a}G(\lfloor\frac{a}{t}\rfloor,\lfloor\frac{b}{t}\rfloor)^{t \cdot h(t)}\times (t^{h(t)}\times y(t))^{t\times s(\lfloor\frac{a}{t}\rfloor)\times s(\lfloor\frac{b}{t}\rfloor)} $$

    再令 hh(x)=x×h(x),yy(x)=(xh(x)×y(x))xhh(x)=x\times h(x),yy(x)=(x^{h(x)}\times y(x))^{x},可得:

    $$\prod_{t=1}^{a}G(\lfloor\frac{a}{t}\rfloor,\lfloor\frac{b}{t}\rfloor)^{hh(t)}\times yy(t)^{s(\lfloor\frac{a}{t}\rfloor)\times s(\lfloor\frac{b}{t}\rfloor)} $$

    最后前缀和 +\text{+} 前缀积 +\text{+} 数论分块即可。

    再加一个小优化,设一个阈值 SS,对于 1t<S1 \leq t < S 的直接暴力算,因为这部分 l,rl,r 相差较小。

    对于 StnS \leq t \leq n 的,再数论分块算。

    #include <bits/stdc++.h>
    
    using namespace std;
    
    inline int read()
    {
    	int x = 0, f = 1;
    	char c = getchar();
    	while(c < '0' || c > '9')
    	{
    		if(c == '-') f = -1;
    		c = getchar();
    	}
    	while(c >= '0' && c <= '9')
    	{
    		x = x * 10 + c - '0';
    		c = getchar();
    	}
    	return x * f;
    }
    
    inline void write(int x)
    {
    	if(x < 0)
    	{
    		putchar('-');
    		x = -x;
    	}
    	if(x > 9)
    		write(x / 10);
    	putchar(x % 10 + '0');
    }
    
    const int _ = 1e6 + 7, mod = 32465177;
    
    bool vis[_];
    
    int cnt, pr[_], mu[_], f[_], h[_], y[_];
    
    int ksm(int x, int y)
    {
    	int res = 1;
    	while(y)
    	{
    		if(y & 1) res = 1ll * res * x % mod;
    		x = 1ll * x * x % mod;
    		y >>= 1;
    	}
    	return res;
    }
    
    void init()
    {
    	mu[1] = 1;
    	f[1] = 1;
    	y[1] = 1;
    	for(int i = 2; i <= _ - 7; ++i)
    	{
    		f[i] = 1ll * f[i - 1] * ksm(i, i) % mod;
    		y[i] = 1;
    		if(!vis[i])
    		{
    			pr[++cnt] = i;
    			mu[i] = -1;
    		}
    		for(int j = 1; j <= cnt && i * pr[j] <= _ - 7; ++j)
    		{
    			int p = i * pr[j];
    			vis[p] = 1;
    			if(i % pr[j] == 0)
    			{
    				mu[p] = 0;
    				break;
    			}
    			mu[p] = -mu[i];
    		}
    	}
    	for(int i = 1; i <= _ - 7; ++i)
    		for(int j = 1; i * j <= _ - 7; ++j)
    		{
    			h[i * j] = ((h[i * j] + mu[i] * i) % (mod - 1) + (mod - 1)) % (mod - 1);
    			y[i * j] = 1ll * y[i * j] * ksm(i, i * mu[i] + mod - 1) % mod;
    		}
    	for(int i = 1; i <= _ - 7; ++i)
    	{
    		y[i] = ksm(1ll * ksm(i, h[i]) * y[i] % mod, i);
    		h[i] = 1ll * h[i] * i % (mod - 1);
    	}
    	y[0] = 1;
    	for(int i = 2; i <= _ - 7; ++i)
    	{
    		y[i] = 1ll * y[i - 1] * y[i] % mod;
    		h[i] = (h[i] + h[i - 1]) % (mod - 1);
    	}
    }
    
    int s(int x)
    {
    	return 1ll * x * (x + 1) / 2 % (mod - 1);
    }
    
    int g(int x, int y)
    {
    	return 1ll * ksm(f[x], s(y)) * ksm(f[y], s(x)) % mod;
    }
    
    int hh(int l, int r)
    {
    	return ((h[r] - h[l - 1]) % (mod - 1) + (mod - 1)) % (mod - 1);
    }
    
    int yy(int l, int r)
    {
    	return 1ll * y[r] * ksm(y[l - 1], mod - 2) % mod;
    }
    
    int S(int a, int b)
    {
    	if(a > b) swap(a, b);
    	int res = 1;
    	for(int i = 1, j; i <= a; i = j + 1)
    	{
    		j = min(a / (a / i), b / (b / i));
    		res = 1ll * res * ksm(g(a / i, b / i), hh(i, j)) % mod * ksm(yy(i, j), 1ll * s(a / i) * s(b / i) % (mod - 1)) % mod; 
    	}
    	return res;
    }
    
    int solve(int l, int r)
    {
    	swap(l, r);
    	int ans1 = 1ll * S(r, r) * S(l - 1, l - 1) % mod, ans2 = 1ll * S(r, l - 1) * S(l - 1, r) % mod;
    	return 1ll * ans1 * ksm(ans2, mod - 2) % mod;
    }
    
    signed main()
    {
    	init();
    	int t = read(), n = read();
    	while(t--)
    	{
    		write(solve(read(), read()));
    		putchar('\n');
    	}
    }
    
    • 1

    信息

    ID
    6567
    时间
    1500ms
    内存
    128MiB
    难度
    7
    标签
    递交数
    0
    已通过
    0
    上传者