1 条题解

  • 0
    @ 2025-8-24 22:29:06

    自动搬运

    查看原文

    来自洛谷,原作者为

    avatar do_while_true

    搬运于2025-08-24 22:29:06,当前版本为作者最后更新于2021-02-15 21:30:01,作者可能在搬运后再次修改,您可在原文处查看最新版

    自动搬运只会搬运当前题目点赞数最高的题解,您可前往洛谷题解查看更多

    以下是正文


    获得另一种阅读体验\text{获得另一种阅读体验}

    设赢,平局,输的概率分别为 P1,P2,P3P_1,P_2,P_3

    E(i)E(i) 为从计数器为 ii 开始走,走到 mm 的步数。根据定义有 E(m)=0E(m)=0

    据题意,得出

    $$E(i)= \begin{cases} P_1E(i+1)+P_2E(i)+P_3E(i-1)+1,(i\geq 1) \\ P_1E(1)+(1-P_1)E(0)+1,(i==0) \end{cases} $$

    E(0)=xE(0)=x

    E(i)=aix+bi,(i>1)E(i)=a_ix+b_i,(i>1)

    $$\because E(0)=P_1E(1)+(1-P_1)E(0)+1 \\ \therefore E(1)=E(0)-\frac{1}{P_1} \\ \therefore a_1=1,b_1=-\frac{1}{P_1} $$

    同理可得:

    $$a_i=\frac{1-P_2}{P_1}a_{i-1}-\frac{P_3}{P_1}a_{i-2},(i>1) \\ b_i=\frac{1-P_2}{P_1}b_{i-1}-\frac{P_3}{P_1}b_{i-2}-\frac{1}{P_1},(i>1) $$

    推出 am,bma_m,b_m 后可得一个一元一次方程

    E(m)=amx+bm=0E(0)=x=bmamE(m)=a_m x+b_m=0 \\ E(0)=x=-\frac{b_m}{a_m}

    由定义可知 E(0)E(0) 即为所求答案。

    如何快速求得 am,bma_m,b_m?可以矩阵快速幂。

    这里就是朴素的矩阵快速幂了,这里给出我推得的初始矩阵和转移矩阵:

    设 $t_1=\frac{1-P_2}{P_1}a_{i-1},t_2=-\frac{P_3}{P_1}b_{i-2},t_3=-\frac{1}{P_1}$

    a:a:

    $$\\ \text{初始矩阵:}\begin{bmatrix}1&1\end{bmatrix} \\ \text{转移矩阵:}\begin{bmatrix}0&t_1\\1&t_2\end{bmatrix} $$

    b:b:

    $$\\ \text{初始矩阵:}\begin{bmatrix}0&t_3&1\end{bmatrix} \\ \text{转移矩阵:} \begin{bmatrix} 0&t_2&0 \\ 1&t_1&0 \\ 0&t_3&1 \end{bmatrix} $$

    mm 可以高精除,模拟短除法得到 mm 的二进制,遍历一遍 mm 的二进制上各个位即可完成快速幂。

    时间复杂度加上矩阵的常数为 $\mathcal{O}(\lg m\times\log_2 m+2^3\times\log_2 m+3^3\times\log_2 m)$,前面是求 mm 的二进制,后面两个分别为 a,ba,b 的矩阵快速幂求解。

    即使本文略去简单的计算及推导,也难免会出现错误,欢迎指正。

    Code\mathcal{Code}

    #include<iostream>
    #include<cstdio>
    #include<algorithm>
    #include<cstring>
    namespace do_while_true {	
    	#define ld double
    	#define ll long long
    	#define re register
    	#define pb push_back
    	#define fir first
    	#define sec second
    	#define pp std::pair
    	#define mp std::make_pair
    	const ll mod = 1000000007;
    	template <typename T> inline T Max(T x, T y) { return x > y ? x : y; }
    	template <typename T> inline T Min(T x, T y) { return x < y ? x : y; }
    	template <typename T> inline T Abs(T x) { return x < 0 ? -x : x; }
    	#define p mod 
    	template <typename T> inline T Add(T x, T y) { return (x + y) % p; }
    	template <typename T> inline T Mul(T x, T y) { return (x * y) % p; } 
    	template <typename T> inline T Mod(T x) { return x % mod; }
    	#undef p
    	template <typename T>
    	inline T& read(T& r) {
    		r = 0; bool w = 0; char ch = getchar();
    		while(ch < '0' || ch > '9') w = ch == '-' ? 1 : 0, ch = getchar();
    		while(ch >= '0' && ch <= '9') r = r * 10 + (ch ^ 48), ch = getchar();
    		return r = w ? -r : r;
    	}
    	template <typename T>
    	inline T qpow(T x, T y) {
    		re T sumq = 1; x %= mod;
    		while(y) {
    			if(y&1) sumq = sumq * x % mod;
    			x = x * x % mod;
    			y >>= 1;
    		}
    		return sumq;
    	}
    	template <typename T> inline T Inv(T x) { return qpow(x, mod-2); }
    	char outch[110];
    	int outct;
    	template <typename T>
    	inline void print(T x) {
    		do {
    			outch[++outct] = x % 10 + '0';
    			x /= 10;
    		} while(x);
    		while(outct >= 1) putchar(outch[outct--]);
    	}
    }
    using namespace do_while_true;
    
    const int N = 1000100;
    int n;
    ll P1, P2, P3;
    ll a[N], b[N], suma[N], sumb[N], isuma, isumb;
    ll c[N], d[N];
    char ch[N];
    int _m[N], m[N], len, ct;
    
    struct Matrix {
    	int n, m;
    	ll a[5][5];
    	void mem() {
    		n = m = 0;
    		for(int i = 0; i <= 4; ++i)
    			for(int j = 0; j <= 4; ++j)
    				a[i][j] = 0;
    	}
    	Matrix operator * (const Matrix& y) {
    		Matrix c; c.mem();
    		c.n = n; c.m = y.m;
    		for(int i = 1; i <= c.n; ++i)
    			for(int j = 1; j <= c.m; ++j)
    				for(int k = 1; k <= m; ++k)
    					(c.a[i][j] += a[i][k] * y.a[k][j]) %= mod;
    		return c;
    	}
    };
    
    void solve() {
    	scanf("%d %s", &n, ch+1); len = std::strlen(ch+1);
    	for(int i = 1; i <= len; ++i) _m[i] = ch[len-i+1]-'0';
    	while(len>=0 && ++ct) { 
    		if(_m[1] & 1) m[ct] = 1;
    		for(int i = len, x = 0; i >= 1; --i) _m[i] += x*10, x = _m[i]%2, _m[i] /= 2;
    		while(_m[len] == 0 && len >= 0) --len;
    	}
    	for(int i = 1; i <= n; ++i) read(a[i]), suma[i] = Add(suma[i-1], a[i]);
    	for(int i = 1; i <= n; ++i) read(b[i]), sumb[i] = Add(sumb[i-1], b[i]);
    	isuma = qpow(suma[n], mod-2); isumb = qpow(sumb[n], mod-2);
    	for(int i = 1; i <= n; ++i) {
    		P1 = Add(P1, Mul(a[i] * isuma % mod, sumb[i-1] * isumb % mod));
    		P2 = Add(P2, Mul(a[i] * isuma % mod, b[i] * isumb % mod));
    		P3 = Add(P3, Mul(a[i] * isuma % mod, Mod(sumb[n] - sumb[i] + mod) * isumb % mod));
    	}
    	c[0] = 1; d[0] = 0; c[1] = 1; d[1] = Mod(-Inv(P1)+mod);
    	ll t1 = Mod(1 - P2 + mod) * Inv(P1) % mod;
    	ll t2 = Mod(-P3 + mod) * Inv(P1) % mod;
    	ll t3 = d[1];
    	Matrix basea, ansa, baseb, ansb;
    	basea.mem(); ansa.mem(); baseb.mem(); ansb.mem();
    	ansa.n = 1; ansa.m = 2;
    	ansa.a[1][1] = 1; ansa.a[1][2] = 1;
    	basea.n = 2; basea.m = 2;
    	basea.a[1][1] = 0; basea.a[1][2] = t1;
    	basea.a[2][1] = 1; basea.a[2][2] = t2;
    	for(int i = 1; i <= ct; ++i, basea = basea * basea) if(m[i]) ansa = ansa * basea; 
    	ansb.n = 1; ansb.m = 3;
    	ansb.a[1][1] = 0; ansb.a[1][2] = t3; ansb.a[1][3] = 1;
    	baseb.n = 3; baseb.m = 3;
    	baseb.a[1][1] = 0; baseb.a[1][2] = t2; baseb.a[1][3] = 0;
    	baseb.a[2][1] = 1; baseb.a[2][2] = t1; baseb.a[2][3] = 0;
    	baseb.a[3][1] = 0; baseb.a[3][2] = t3; baseb.a[3][3] = 1;
    	for(int i = 1; i <= ct; ++i, baseb = baseb * baseb) if(m[i]) ansb = ansb * baseb; 
    	printf("%lld\n", Mod(-ansb.a[1][1]+mod) * Inv(ansa.a[1][1]) % mod);
    }
    
    signed main() {
    	#ifndef ONLINE_JUDGE
    	freopen("in.txt", "r", stdin);
    	#endif
    	int T = 1;
    //	read(T);
    	while(T--) solve();
    	fclose(stdin);
    	return 0;
    }
    
    • 1

    信息

    ID
    6471
    时间
    1000ms
    内存
    128MiB
    难度
    5
    标签
    递交数
    0
    已通过
    0
    上传者