1 条题解
-
0
自动搬运
来自洛谷,原作者为

岸芷汀兰
岸芷汀兰,郁郁青青。搬运于
2025-08-24 22:25:54,当前版本为作者最后更新于2021-07-03 16:39:33,作者可能在搬运后再次修改,您可在原文处查看最新版自动搬运只会搬运当前题目点赞数最高的题解,您可前往洛谷题解查看更多
以下是正文
一、题目:
二、题目:
这道题的官方题解秀了我一脸。
设多项式
$$\begin{aligned} A(x)&=(x-1)(x-2)(x-3)(x-5)\cdots(x-F_k)\\ &=x^k+b_1x^{k-1}+b_2x^{k-2}+\cdots+b_{k-1}x+b_k \end{aligned} $$注意到
$$\begin{aligned} A(1)=1^k+b_1\times1^{k-1}+b_2\times1^{k-2}+\cdots+b_k=0\\ A(2)=2^k+b_1\times2^{k-1}+b_2\times2^{k-2}+\cdots+b_k=0\\ A(3)=3^k+b_1\times 3^{k-1}+b_2\times 3^{k-2}+\cdots +b_k=0\\ A(5)=5^k+b_1\times 5^{k-1}+b_2\times 5^{k-2}+\cdots +b_k=0\\ \end{aligned} $$即
$$\forall i\in[1,k],A(F_i)=F_i^k+b_1F_i^{k-1}+b_2F_i^{k-2}+\cdots+b_k=0 $$等式两边同时乘以 ,得
$$a_iF_iA(F_i)=a_iF_i^{k+1}+b_1a_iF_i^{k}+b_2a_iF_i^{k-1}+\cdots+b_ka_iF_i=0 $$累加,得
$$\sum\limits_{i=1}^kF_ia_iA(F_i)=\sum\limits_{i=1}^{k}a_iF_i^{k+1}+b_1\sum\limits_{i=1}^ka_iF_i^{k}+\cdots+b_k\sum\limits_{i=1}^ka_iF_i=0 $$即
这题结束了,时间复杂度就是求出 的系数 的时间复杂度,即 。
三、代码:
#include <iostream> #include <cstdio> #include <cstring> using namespace std; #define FILEIN(s) freopen(s, "r", stdin) #define FILEOUT(s) freopen(s, "w", stdout) #define mem(s, v) memset(s, v, sizeof s) inline int read(void) { int x = 0, f = 1; char ch = getchar(); while (ch < '0' || ch > '9') { if (ch == '-') f = -1; ch = getchar(); } while (ch >= '0' && ch <= '9') { x = x * 10 + ch - '0'; ch = getchar(); } return f * x; } const int MAXK = 4005; int MOD, K; long long f[MAXK]; struct Polynomial { int n; long long a[MAXK]; Polynomial() { n = 0; mem(a, 0); } inline friend Polynomial operator *(const Polynomial &A, const Polynomial &B) { Polynomial res; res.n = A.n + B.n; for (int i = 0; i <= A.n; ++ i) for (int j = 0; j <= B.n; ++ j) (res.a[i + j] += A.a[i] * B.a[j] % MOD) %= MOD; return res; } }; inline void prework(void) { f[1] = 1; f[2] = 2; for (int i = 3; i <= K; ++ i) f[i] = (f[i - 1] + f[i - 2]) % MOD; } int main() { int T = read(); while (T --) { K = read(); MOD = read(); prework(); Polynomial res; res.n = 0; res.a[0] = 1; for (int i = 1; i <= K; ++ i) { Polynomial now; now.n = 1; now.a[0] = -f[i]; now.a[1] = 1; res = res * now; } long long ans = 0; for (int i = 1; i <= K; ++ i) { long long p = read(); (ans += p * res.a[i - 1] % MOD) %= MOD; } ans = -ans; if (ans < 0) ans += MOD; printf("%lld\n", ans); } return 0; }
- 1
信息
- ID
- 6176
- 时间
- 6000ms
- 内存
- 256MiB
- 难度
- 6
- 标签
- 递交数
- 0
- 已通过
- 0
- 上传者