1 条题解

  • 0
    @ 2025-8-24 22:24:06

    自动搬运

    查看原文

    来自洛谷,原作者为

    avatar s_r_f
    这里是一个只会背板和fst的蒟蒻

    搬运于2025-08-24 22:24:06,当前版本为作者最后更新于2020-10-04 11:57:42,作者可能在搬运后再次修改,您可在原文处查看最新版

    自动搬运只会搬运当前题目点赞数最高的题解,您可前往洛谷题解查看更多

    以下是正文


    ansi=F(ci)=j=0n1ajcijans_i = F(c^i) = \sum\limits_{j=0}^{n-1} a_jc^{ij}

    众所周知, ij=(i+j2)(i2)(j2)ij = \binom{i+j}{2} - \binom{i}{2} - \binom{j}{2} :

    $ans_i = c^{-\binom{i}{2}} \sum\limits_{j=0}^{n-1} a_jc^{-\binom{j}{2}} c^{\binom{i+j}{2}}$

    不难发现这是一个卷积形式,模数 998244353998244353 为 NTT 模数, NTT 即可。

    几个细节:

    1.1. 注意到我们是把一个长度为 n+mn+m 的多项式和 长度为 nn 的多项式做卷积,但是我们只需要卷积结果的第 n(n+m1)n - (n+m-1) 项,由于 NTT 是循环卷积,所以我们可以把多项式长度设为 n+mn+m , 对答案没有影响。

    2.2. 每次用快速幂算 c(i2)c^{-\binom{i}{2}}c(i2)c^{\binom{i}{2}}Θ((n+m)logmod)\Theta((n+m)\log mod) 的,非常慢。

    可以 Θ(mod)\Theta(\sqrt{mod}) 预处理然后光速幂 Θ(1)\Theta(1) 查询,或者用两次前缀积直接递推结果.

    code(最慢的点324ms) :

    #include <bits/stdc++.h>
    #define LL unsigned long long
    #define uint unsigned int
    using namespace std;
    template <typename T> void read(T &x){
    	static char ch; x = 0,ch = getchar();
    	while (!isdigit(ch)) ch = getchar();
    	while (isdigit(ch)) x = x * 10 + ch - '0',ch = getchar();
    }
    inline void write(int x){if (x > 9) write(x/10); putchar(x%10+'0'); }
    const int P = 998244353,N = 1<<21;
    inline uint power(uint x,int y){
    	y %= P-1;
    	static uint r; r = 1; while (y){ if (y&1) r = (LL)r * x % P; x = (LL)x * x % P,y >>= 1; }
    	return r;
    }
    int n,m,c,R[N],L; uint a[N],w[N<<1],iw[N<<1],pwc[N],ipwc[N],F[N],G[N];
    inline int getR(int n){
    	int i,l = 1,Lim = 2; while (Lim <= n) Lim <<= 1,++l;
    	for (i = 0; i < Lim; ++i) R[i] = (R[i>>1]>>1) | ((i&1)<<l-1);
    	return Lim;
    }
    inline void NTT(uint *A,int n){
    	register int i,j,k; uint v;
    	for (i = 1; i < n; ++i) if (i < R[i]) swap(A[i],A[R[i]]);
    	for (i = 1; i < n; i <<= 1) for (j = 0; j < n; j += i << 1) for (k = j; k < i+j; ++k)
    		v = (LL)A[k+i] * w[(i<<1)+k-j] % P,A[k+i] = (A[k]<v)?(A[k]+P-v):(A[k]-v),A[k] = (A[k]+v>=P)?(A[k]+v-P):(A[k]+v);
    }
    inline void iNTT(uint *A,int n){
    	register int i,j,k; uint v;
    	for (i = 1; i < n; ++i) if (i < R[i]) swap(A[i],A[R[i]]);
    	for (i = 1; i < n; i <<= 1) for (j = 0; j < n; j += i << 1) for (k = j; k < i+j; ++k)
    		v = (LL)A[k+i] * iw[(i<<1)+k-j] % P,A[k+i] = (A[k]<v)?(A[k]+P-v):(A[k]-v),A[k] = (A[k]+v>=P)?(A[k]+v-P):(A[k]+v);
    	for (i = 0,v = power(n,P-2); i < n; ++i) A[i] = (LL)A[i] * v % P;
    }
    int main(){
    	register int i,j; uint v;
    	read(n),read(c),read(m);
    	pwc[1] = c,ipwc[1] = power(c,P-2);
    	for (pwc[0] = i = 1; i <= n+m; ++i) pwc[i] = (LL)pwc[i-1] * pwc[1] % P;
    	for (pwc[0] = i = 1; i <= n+m; ++i) pwc[i] = (LL)pwc[i] * pwc[i-1] % P;
    	for (ipwc[0] = i = 1; i <= max(n,m); ++i) ipwc[i] = (LL)ipwc[i-1] * ipwc[1] % P;
    	for (ipwc[0] = i = 1; i <= max(n,m); ++i) ipwc[i] = (LL)ipwc[i] * ipwc[i-1] % P;
    	for (i = 0; i < n; ++i) read(a[i]),a[i] = (LL)a[i] * (i?ipwc[i-1]:1) % P;
    	L = getR(n+m);
    	for (i = 1,j = 2; j <= L; ++i,j <<= 1){
    		int l = j + (j>>1);
    		w[j] = 1,v = power(3,(P-1)/j);
    		for (register int k = j+1; k <= l; ++k) w[k] = (LL)w[k-1] * v % P;
    		iw[j] = 1,v = power(v,P-2);
    		for (register int k = j+1; k <= l; ++k) iw[k] = (LL)iw[k-1] * v % P;
    	}
    	for (F[0] = 1,i = 1; i <= n+m; ++i) F[i] = pwc[i-1];
    	for (i = 1; i <= n; ++i) G[i] = a[n-i];
    	NTT(F,L); NTT(G,L);
    	for (i = 0; i < L; ++i) F[i] = (LL)F[i] * G[i] % P;
    	iNTT(F,L);
    	for (i = 0; i < m; ++i) write((LL)F[i+n] * (i?ipwc[i-1]:1) % P),putchar(i<m?' ':'\n');
    	return 0;
    }
    
    • 1

    信息

    ID
    5741
    时间
    3000ms
    内存
    512MiB
    难度
    6
    标签
    递交数
    0
    已通过
    0
    上传者