1 条题解
-
0
自动搬运
来自洛谷,原作者为

Ireliaღ
逝去的是刀锋,不变的是意志搬运于
2025-08-24 22:21:30,当前版本为作者最后更新于2020-05-04 19:19:03,作者可能在搬运后再次修改,您可在原文处查看最新版自动搬运只会搬运当前题目点赞数最高的题解,您可前往洛谷题解查看更多
以下是正文
比赛中思考过程最短的一道题。
考虑转化一下题意,每次修改相当于添加一条从到的线段,每次查询就是询问贯穿区间的线段个数。
把每条线段的左端点当做第一维,右端点当做第二维,那么这条线段可以对应坐标系中的一个点,查询就可以看做询问且的矩形上的点数,剩下的就是一个kd-tree的模板了。
代码如下
#include <algorithm> #include <iostream> #include <cstdio> using namespace std; const int MAXN = 1e5 + 5; const double A = 0.7; struct Data{ int x[2]; Data(int a, int b) { x[0] = a; x[1] = b; } Data() {} }; int operator == (const Data &a, const Data &b) { return a.x[0] == b.x[0] && a.x[1] == b.x[1]; } struct Node{ Data pos; Node *ch[2]; int cnt, sum, cov; int mn[2], mx[2]; Node(Data pos, int cnt) : pos(pos), cnt(cnt) { cov = 1; sum = cnt; for (int i = 0; i < 2; i++) mn[i] = mx[i] = pos.x[i]; ch[0] = ch[1] = NULL; } Node() {} }npool[MAXN]; int Comp0(Node *a, Node *b) { if (a->pos.x[0] != b->pos.x[0]) return a->pos.x[0] < b->pos.x[0]; else return a->pos.x[1] < b->pos.x[1]; } int Comp1(Node *a, Node *b) { if (a->pos.x[1] != b->pos.x[1]) return a->pos.x[1] < b->pos.x[1]; else return a->pos.x[0] < b->pos.x[0]; } int n, m; int ncnt; Node *rt; Node *tree[MAXN]; int tcnt; Node *New(Data pos, int cnt) { npool[ncnt] = Node(pos, cnt); return &npool[ncnt++]; } void Update(Node *now) { now->cov = 1 + (now->ch[0] ? now->ch[0]->cov : 0) + (now->ch[1] ? now->ch[1]->cov : 0); now->sum = now->cnt + (now->ch[0] ? now->ch[0]->sum : 0) + (now->ch[1] ? now->ch[1]->sum : 0); for (int i = 0; i < 2; i++) now->mn[i] = now->mx[i] = now->pos.x[i]; for (int i = 0; i < 2; i++) { if (now->ch[i]) { for (int j = 0; j < 2; j++) { now->mn[j] = min(now->mn[j], now->ch[i]->mn[j]); now->mx[j] = max(now->mx[j], now->ch[i]->mx[j]); } } } } int Bad(Node *now) { int ls = now->ch[0] ? now->ch[0]->cov : 0; int rs = now->ch[1] ? now->ch[1]->cov : 0; return 1.0 * ls > A * now->cov || 1.0 * rs > A * now->cov; } void DFS(Node *now) { if (!now) return; DFS(now->ch[0]); DFS(now->ch[1]); tree[++tcnt] = now; now->ch[0] = now->ch[1] = NULL; Update(now); } void Rebuild(Node *&now, int l, int r, int d) { if (l > r) return; int mid = l + r >> 1; if (d) nth_element(tree + l, tree + mid, tree + r + 1, Comp1); else nth_element(tree + l, tree + mid, tree + r + 1, Comp0); now = tree[mid]; Rebuild(now->ch[0], l, mid - 1, (d + 1) % 2); Rebuild(now->ch[1], mid + 1, r, (d + 1) % 2); Update(now); } void Maintain(Node *&now, int d) { if (Bad(now)) { tcnt = 0; DFS(now); Rebuild(now, 1, tcnt, d); } } void Insert(Node *&now, Data pos, int cnt, int d) { if (!now) { now = New(pos, cnt); return; } if (pos == now->pos) { now->cnt += cnt; Update(now); return; } if (pos.x[d] < now->pos.x[d]) Insert(now->ch[0], pos, cnt, (d + 1) % 2); else Insert(now->ch[1], pos, cnt, (d + 1) % 2); Update(now); Maintain(now, d); } int Inside(Node *now, int mn[], int mx[]) { for (int i = 0; i < 2; i++) { if (now->pos.x[i] < mn[i] || now->pos.x[i] > mx[i]) return 0; } return 1; } int AllIn(Node *now, int mn[], int mx[]) { for (int i = 0; i < 2; i++) { if (now->mn[i] < mn[i] || now->mx[i] > mx[i]) return 0; } return 1; } int AllOut(Node *now, int mn[], int mx[]) { for (int i = 0; i < 2; i++) { if (now->mn[i] > mx[i] || now->mx[i] < mn[i]) return 1; } return 0; } int Query(Node *now, int mn[], int mx[]) { if (!now) return 0; if (AllIn(now, mn, mx)) return now->sum; if (AllOut(now, mn, mx)) return 0; return (Inside(now, mn, mx) ? now->cnt : 0) + Query(now->ch[0], mn, mx) + Query(now->ch[1], mn, mx); } int main() { ios::sync_with_stdio(false); cin.tie(NULL); int op, x, y; int mn[2], mx[2]; cin >> n >> m; for (int i = 1; i <= m; i++) { cin >> op >> x >> y; if (op == 1) { Insert(rt, Data(x, y), 1, 0); } else { mn[0] = 1; mx[0] = x; mn[1] = y; mx[1] = n; cout << Query(rt, mn, mx) << '\n'; } } return 0; }
- 1
信息
- ID
- 4726
- 时间
- 1000~3000ms
- 内存
- 500MiB
- 难度
- 5
- 标签
- (无)
- 递交数
- 0
- 已通过
- 0
- 上传者