1 条题解
-
0
自动搬运
来自洛谷,原作者为

EternalAlexander
魔力的碎片都不再拥有的少年搬运于
2025-08-24 22:17:46,当前版本为作者最后更新于2020-02-27 13:58:56,作者可能在搬运后再次修改,您可在原文处查看最新版自动搬运只会搬运当前题目点赞数最高的题解,您可前往洛谷题解查看更多
以下是正文
发现毒瘤们想强迫我们写平衡树,因此,我们考虑怎么不写平衡树。
发现有个东西叫做 01trie。这玩意可以当平衡树用,不会的可以看这里。
然而并不能通过这个题,因为可恶的毒瘤们卡了空间,而 01trie 的空间复杂度是 ,其中 是值域。
然而,这棵树的叶节点数量是 的,因此,假如我们能通过某种办法把它的所有单链压缩起来,这棵树上的节点数就会变成 。因为所有 个叶节点的虚树大小只有 。

实现起来,大概就是和普通 01trie 一样地从根节点向下匹配,然后假如遇到失配,就分裂当前节点。
如果你学习过后缀树,你会发现这个东西的实现方式和后缀树非常类似。
这样,空间复杂度可以达到 ,我们就能愉快地不写平衡树而通过本题了。
#include <bits/stdc++.h> const int maxn = 2000005,lim=30; const int base=1e7; int g(int x,int i){return (x>>i)&1;} int reverse(int x){ int ans=0; for(int i=0;i<lim;++i)ans+=g(x,i)<<(lim-i-1); return ans; } struct compressed_trie { int ch[maxn*2][2],d[maxn*2],v[maxn*2],pt[maxn*2],size[maxn*2],tl=1; int newnode(int p,int dep){ pt[++tl]=p;d[tl]=dep;return tl; }void insert(int x,int det){ int v1=x;x=reverse(x); int rt=1,rem=0,last=0; for(int i=0;i<lim;++i){ rem++;int c1=g(x,i); while(i>d[rt]){ if(!ch[rt][c1]){ ch[rt][c1]=newnode(x>>i,lim); v[tl]=v1; size[ch[rt][c1]]=det; return; }last=rt;rem=i-d[rt];rt=ch[rt][c1]; size[last]+=det; }int c2=g(pt[rt],rem-1); if(c1!=c2){ int u=newnode(pt[rt],i-1);size[u]=size[rt]+det; ch[u][c2]=rt;ch[u][c1]=newnode(x>>i,lim); ch[last][g(pt[rt],0)]=u; pt[rt]>>=(rem-1); last=u;rt=ch[u][c1];rem=1;size[rt]+=det;v[rt]=v1; return; } }size[rt]+=det; }int rank(int x){ insert(x,0); x=reverse(x);int rt=1,ans=0; for(int i=0;i<lim;++i){ int c1=g(x,i); while(i>d[rt]){ if(c1==1)ans+=size[ch[rt][0]]; rt=ch[rt][c1]; } }return ans; }int kth(int x,int rt=1){ if(rt==1)insert(x,0); if(!ch[rt][0]&&!ch[rt][1])return v[rt]; if(x<=size[ch[rt][0]])return kth(x,ch[rt][0]); else return kth(x-size[ch[rt][0]],ch[rt][1]); } }T; int opt,t,n,q,sum,lastans; int main() { T.d[1]=-1; scanf("%d%d",&n,&q); for(int i=1;i<=n;++i){scanf("%d",&t);T.insert(t,1);} while (q--) { scanf("%d %d",&opt,&t);t^=lastans; if (opt==1) T.insert(t, 1); if (opt==2) T.insert(t, -1); if(opt<=2)continue; if (opt==3)lastans=T.rank(t)+1; if (opt==4)lastans=T.kth(t); if (opt==5)lastans=T.kth(T.rank(t)); if (opt==6)lastans=T.kth(T.rank(t+1)+1); sum^=lastans; }printf("%d",sum); return 0; }
- 1
信息
- ID
- 5163
- 时间
- 3000ms
- 内存
- 89MiB
- 难度
- 5
- 标签
- 递交数
- 0
- 已通过
- 0
- 上传者