1 条题解
-
0
自动搬运
来自洛谷,原作者为

Karry5307
兄弟会背叛你,女人会离开你,金钱会诱惑你,生活会刁难你,只有数学不会,不会就是不会,怎么学都不会搬运于
2025-08-24 22:17:08,当前版本为作者最后更新于2020-02-10 09:59:06,作者可能在搬运后再次修改,您可在原文处查看最新版自动搬运只会搬运当前题目点赞数最高的题解,您可前往洛谷题解查看更多
以下是正文
题面
我相信我讲的很清楚。
前言
国家队队爷并不会 general 情况下的做法,如果有人想出来了请联系我,并且他可以吊打国家队队爷顺便提一句,那个题目叫做 Epic Convolution II题解
人口普查分。
我们来推式子。
现在考虑把这个东西拆成两半,于是得到
$$f_n=\sum\limits_{k=0}^{m-1}k^ng_kh_{n-k}+\sum\limits_{k=m}^{n}k^ng_kh_{n-k} $$然后代入,由于 在 的时候为 ,所以原式化为
由于 在每组询问中是不变的,所以预处理一下每个数的 次幂即可。
推式子。
先不考虑当 时 的限制,直接让 ,然后开始推式子。
$$f_n=\sum\limits_{k=0}^{n}k^n\frac{1}{(k+m+1)!}\frac{(-1)^{n-k-m}}{(n-k-m)!} $$注意到 ,所以等式两边同时乘上 ,可以把右边写成二项式的形式。于是我们有
$$(n+1)!f_n=\sum\limits_{k=0}^{n}k^n(-1)^{n-k-m}\binom{n+1}{k+m+1} $$然后感觉是不是有点不知所措了?
其实,我们接下来的一步是要拆右边的二项式。(这一步需要眼力以及很多的技巧)
考虑到有这样一个式子:
$$\binom{n+1}{k+m+1}=\sum\limits_{j=0}^{n}\binom{j}{k}\binom{n-j}{m} $$我们来证明一下。你会发现右边那个东西特别像卷积形式,所以可以用生成函数的思想。
考虑在右边乘上一个 并且把它拆成 与 的乘积,于是等式右边变成如下式子:
$$\sum\limits_{j=0}^{n}x^j\binom{j}{k}x^{n-j}\binom{n-j}{m} $$然后你会发现我们如果设 和 ,那么等式右边就是两个生成函数的乘积的 的系数。
幸运的是,这两个生成函数都有简单的封闭形式,这里以 为例。(其实 和 形式是一样的,知道一个就知道另一个)
考虑到当 的时候 的系数为 ,所以我们可以考虑平移一下。
我们构造 $F^\prime(x)=\sum\limits_{i=0}^{\infty}\binom{i+k}{k}x^i$,那么可以发现 。
然而 的封闭形式非常简单,是 。
所以,,同理有 ,于是得到 。
现在我们来求它的 的系数。
根据上面的推导,我们发现 中 的系数很好求,而我们发现
$$\frac{x^{k+m}}{(1-x)^{k+m+2}}=\frac{x^{k+m}}{(1-x)^{k+m+1}}\frac{1}{1-x} $$而这个 相当于将系数做前缀和。(但凡是学过一点生成函数的都知道吧),所以我们的答案为
这就是个裸的上指标求和,因此答案为 。
啊哈!回到正题,把我们刚刚证明的式子代入一下,可得
$$(n+1)!f_n=\sum\limits_{k=0}^{n}k^n(-1)^{n-k-m}\sum\limits_{j=0}^{n}\binom{j}{k}\binom{n-j}{m} $$然后我们发现可以调整一下求和的上下界,所以有
$$(n+1)!f_n=\sum\limits_{k=0}^{n}\sum\limits_{j=k}^{n}k^n(-1)^{n-k-m}\binom{j}{k}\binom{n-j}{m} $$然后交换一下求和顺序,得到
$$(n+1)!f_n=\sum\limits_{j=0}^{n}\sum\limits_{k=0}^{j}k^n(-1)^{n-k-m}\binom{j}{k}\binom{n-j}{m} $$接着拆 ,拆成 和 ,得到(这一步需要眼力以及很多的技巧)
$$(n+1)!f_n=\sum\limits_{j=0}^{n}\sum\limits_{k=0}^{j}k^n(-1)^{j-k}(-1)^{n-j-m}\binom{j}{k}\binom{n-j}{m} $$然后我们写的清楚点
$$(n+1)!f_n=\sum\limits_{j=0}^{n}(-1)^{n-j-m}\binom{n-j}{m}\sum\limits_{k=0}^{j}k^n(-1)^{j-k}\binom{j}{k} $$然后发现右边那个东西是斯特林数的形式啥的,就可以化开了,所以推出来有
$$(n+1)!f_n=\sum\limits_{j=0}^{n}\begin{Bmatrix}n\\j\end{Bmatrix}\binom{n-j}{m}(-1)^{n-j-m}j! $$接下来,右边是一个很经典的公式,证明可以看我 P5825 的题解,由于证明过程太长了,所以不写在这里。(因为后面还有好几个 )
所以我们得到
$$f_n=\frac{\left\langle\begin{matrix}n\\m\end{matrix}\right\rangle}{(n+1)!} $$考虑到当 的时候 为 ,所以它确实是正确答案。
但是,我们发现 很小(很大的时候做不做得出还是问题),所以可以考虑另外一个很经典的公式:(P5825 题解有人证明了这个式子,证明过程跟 之前的式子一样,都是数学归纳法)
$$\left\langle\begin{matrix}n\\m\end{matrix}\right\rangle=\sum\limits_{k=0}^{m}\binom{n+1}{k}(m+1-k)^n(-1)^k $$然后预处理一下幂即可,时间复杂度 。
特别的是,如果你不预处理幂时间复杂度是 ,如果写的不好可能不会通过。
一些技巧性的东西。
的范围变成了 而不是 ,所以我们需要比较快速的来处理 。
由于快速阶乘算法太慢,并且模数固定,所以我们考虑分块打表,可以考虑每 打一次。
然而可能会很卡常,幂也要分块打表一下。
时间复杂度 。(这里用 表示模数, 表示阶乘分块打表的块长),如果幂不分块打表而是直接快速幂的话时间复杂度是 ,可能无法通过。
大量的 dirty works 以及一些技巧性的东西。
首先先推式子。
$$f_n=\sum\limits_{k=0}^{n}k^n\frac{k^m}{k!}\frac{(-1)^k}{k} $$眼尖的神仙可以发现这就是个斯特林数,所以
接下来使用二阶欧拉数进行计算。我们有以下两个恒等式:
$$\begin{Bmatrix}x\\x-n\end{Bmatrix}=\sum\limits_{k}\left\langle\left\langle\begin{matrix}n\\k\end{matrix}\right\rangle\right\rangle\binom{x+n-1-k}{2n} $$和
$$\begin{bmatrix}x\\x-n\end{bmatrix}=\sum\limits_{k}\left\langle\left\langle\begin{matrix}n\\k\end{matrix}\right\rangle\right\rangle\binom{x+k}{2n} $$证明可以使用数学归纳法对 进行归纳。
然后考虑斯特林多项式,根据定义,有
$$\sigma_n(x)=\frac{\begin{bmatrix}x\\x-n\end{bmatrix}}{x(x-1)\cdots(x-n)} $$我们知道, 的次数是 ,而分母的次数为 ,所以说, 的次数为 。
类似地,由于 与 次数总是相同,所以 的次数也为 ,也就是说 的次数也为 。
于是我们可以使用一些手段算出 很小的时候的一些值然后带进去插值就可以得到通项公式。
接下来就是手算斯特林数这种 dirty works 了,算完之后再插值就可以打表求出这些多项式了。为什么刚刚说明了多项式的次数呢,是方便你手算的。(我在这个子任务上用了一个下午)
时间复杂度 ,如果不使用秦九韶直接快速幂的话时间复杂度为 ,可能无法通过。
后面 个测试点,由于 的范围非常大,所以边读入边取模。
比 更难,形式更隐蔽的数学推导。
考虑先交换求和顺序
$$ans=\sum\limits_{i=0}^{m}\sum\limits_{k=0}^{m-i}\frac{(k+1)^{m+n+1-i}}{(k+1)!}\frac{\binom{2n+1}{i}(-1)^{m-k}}{(m-k-i)!} $$然后改变一下内层和式的上下界(也就是将原来的 变成了现在的 )
$$ans=\sum\limits_{i=0}^{m}\sum\limits_{k=1}^{m-i+1}\frac{k^{m+n+1-i}}{k!}\frac{\binom{2n+1}{i}(-1)^{m-k+1}}{(m-k+1-i)!} $$考虑到当 时里面的和式为 ,所以改一下下界。接下来拆 ,拆成 和 ,并且把与 无关的项提出来
$$ans=\sum\limits_{i=0}^{m}\binom{2n+1}{i}(-1)^i\sum\limits_{k=0}^{m-i+1}\frac{k^{m+n+1-i}}{k!}\frac{(-1)^{m-k+1-i}}{(m-k+1-i)!} $$发现右边是个斯特林数,于是有
$$ans=\sum\limits_{i=0}^{m}\binom{2n+1}{i}(-1)^i\begin{Bmatrix}n+m+1-i\\m+1-i\end{Bmatrix} $$这是一个非常经典的公式,是二阶欧拉数的通项公式,证明的话可以使用数学归纳法,类似于之前提到的一样。
这个东西有个组合意义,就是多重集 的满足对于 , 的两次出现之间的所有数都大于 的排列个数。
一下就好了,时间复杂度 。
哎,算了,与鰰达成协议,把代码放出来吧。
代码
#include<bits/stdc++.h> using namespace std; typedef int ll; typedef long long int li; const ll MAXN=2e5+51,MOD=998244353; ll taskId; ll factBlock[1051]={1,373341033,45596018,834980587,623627864,428937595,442819817,499710224,833655840,83857087,295201906,788488293,671639287,849315549,597398273,813259672,732727656,244038325,122642896,310517972,160030060,483239722,683879839,712910418,384710263,433880730,844360005,513089677,101492974,959253371,957629942,678615452,34035221,56734233,524027922,31729117,102311167,330331487,8332991,832392662,545208507,594075875,318497156,859275605,300738984,767818091,864118508,878131539,316588744,812496962,213689172,584871249,980836133,54096741,417876813,363266670,335481797,730839588,393495668,435793297,760025067,811438469,720976283,650770098,586537547,117371703,566486504,749562308,708205284,932912293,939830261,983699513,206579820,301188781,593164676,770845925,247687458,41047791,266419267,937835947,506268060,6177705,936268003,166873118,443834893,328979964,470135404,954410105,117565665,832761782,39806322,478922755,394880724,821825588,468705875,512554988,232240472,876497899,356048018,895187265,808258749,575505950,68190615,939065335,552199946,694814243,385460530,529769387,640377761,916128300,440133909,362216114,826373774,502324157,457648395,385510728,904737188,78988746,454565719,623828097,686156489,713476044,63602402,570334625,681055904,222059821,477211096,343363294,833792655,461853093,741797144,74731896,930484262,268372735,941222802,677432735,474842829,700451655,400176109,697644778,390377694,790010794,360642718,505712943,946647976,339045014,715797300,251680896,70091750,40517433,12629586,850635539,110877109,571935891,695965747,634938288,69072133,155093216,749696762,963086402,544711799,724471925,334646013,574791029,722417626,377929821,743946412,988034679,405207112,18063742,104121967,638607426,607304611,751377777,35834555,313632531,18058363,656121134,40763559,562910912,495867250,48767038,210864657,659137294,715390025,865854329,324322857,388911184,286059202,636456178,421290700,832276048,726437551,526417714,252522639,386147469,674313019,274769381,226519400,272047186,117153405,712896591,486826649,119444874,338909703,18536028,41814114,245606459,140617938,250512392,57084755,157807456,261113192,40258068,194807105,325341339,884328111,896332013,880836012,737358206,202713771,785454372,399586250,485457499,640827004,546969497,749602473,159788463,159111724,218592929,675932866,314795475,811539323,246883213,696818315,759880589,4302336,353070689,477909706,559289160,79781699,878094972,840903973,367416824,973366814,848259019,462421750,667227759,897917455,81800722,956276337,942686845,420541799,417005912,272641764,941778993,217214373,192220616,267901132,50530621,652678397,354880856,164289049,781023184,105376215,315094878,607856504,733905911,457743498,992735713,35212756,231822660,276036750,734558079,424180850,433186147,308380947,18333316,12935086,351491725,655645460,535812389,521902115,67016984,48682076,64748124,489360447,361275315,786336279,805161272,468129309,645091350,887284732,913004502,358814684,281295633,328970139,395955130,164840186,820902807,761699708,246274415,592331769,913846362,866682684,600130702,903837674,529462989,90612675,526540127,533047427,110008879,674279751,801920753,645226926,676886948,752481486,474034007,457790341,166813684,287671032,188118664,244731384,404032157,269766986,423996017,182948540,356801634,737863144,652014069,206068022,504569410,919894484,593398649,963768176,882517476,702523597,949028249,128957299,171997372,50865043,20937461,690959202,581356488,369182214,993580422,193500140,540665426,365786018,743731625,144980423,979536721,773259009,617053935,247670131,843705280,30419459,985463402,261585206,237885042,111276893,488166208,137660292,720784236,244467770,26368504,792857103,666885724,670313309,905683034,259415897,512017253,826265493,111960112,633652060,918048438,516432938,386972415,996212724,610073831,444094191,72480267,665038087,11584804,301029012,723617861,113763819,778259899,937766095,535448641,593907889,783573565,673298635,599533244,655712590,173350007,868198597,169013813,585161712,697502214,573994984,285943986,675831407,3134056,965907646,401920943,665949756,236277883,612745912,813282113,892454686,901222267,624900982,927122298,686321335,84924870,927606072,506664166,353631992,165913238,566073550,816674343,864877926,171259407,908752311,874007723,803597299,613676466,880336545,282280109,128761001,58852065,474075900,434816091,364856903,149123648,388854780,314693916,423183826,419733481,888483202,238933227,336564048,757103493,100189123,855479832,51370348,403061033,496971759,831753030,251718753,272779384,683379259,488844621,881783783,659478190,445719559,740782647,546525906,985524427,548033568,333772553,331916427,752533273,730387628,93829695,655989476,930661318,334885743,466041862,428105027,888238707,232218076,769865249,730641039,616996159,231721356,326973501,426068899,722403656,742756734,663270261,364187931,350431704,671823672,633125919,226166717,386814657,237594135,451479365,546182474,119366536,465211069,605313606,728508871,249619035,663053607,900453742,48293872,229958401,62402409,69570431,71921532,960467929,537087913,514588945,513856225,415497414,286592050,645469437,102052166,163298189,873938719,617583886,986843080,962390239,580971332,665147020,88900164,89866970,826426395,616059995,443012312,659160562,229855967,687413213,59809521,398599610,325666688,154765991,159186619,210830877,386454418,84493735,974220646,820097297,2191828,481459931,729073424,551556379,926316039,151357011,808637654,218058015,786112034,850407126,84202800,94214098,30019651,121701603,176055335,865461951,553631971,286620803,984061713,888573766,302767023,977070668,110954576,83922475,51568171,60949367,19533020,510592752,615419476,341370469,912573425,286207526,206707897,384156962,414163604,193301813,749570167,366933789,11470970,600191572,391667731,328736286,30645366,215162519,604947226,236199953,718439098,411423177,803407599,632441623,766760224,263006576,757681534,61082578,681666415,947466395,12206799,659767098,933746852,978860867,59215985,161179205,439197472,259779111,511621808,145770512,882749888,943124465,872053396,631078482,166861622,743415395,772287179,602427948,924112080,385643091,794973480,883782693,869723371,805963889,313106351,262132854,400034567,488248149,265769800,791715397,408753255,468381897,415812467,172922144,64404368,281500398,512318142,288791777,955559118,242484726,536413695,205340854,707803527,576699812,218525078,875554190,46283078,833841915,763148293,807722138,788080170,556901372,150896699,253151120,97856807,918256774,771557187,582547026,472709375,911615063,743371401,641382840,446540967,184639537,157247760,775930891,939702814,499082462,19536133,548753627,593243221,563850263,185475971,687419227,396799323,657976136,864535682,433009242,860830935,33107339,517661450,467651311,812398757,202133852,431839017,709549400,99643620,773282878,290471030,61134552,129206504,929147251,837008968,422332597,353775281,469563025,62265336,835064501,851685235,21197005,264793769,326416680,118842991,84257200,763248924,687559609,150907932,401832452,242726978,766752066,959173604,390269102,992293822,744816299,476631694,177284763,702429415,374065901,169855231,629007616,719169602,564737074,475119050,714502830,40993711,820235888,749063595,239329111,612759169,18591377,419142436,442202439,941600951,158013406,637073231,471564060,447222237,701248503,599797734,577221870,69656699,51052704,6544303,10958310,554955500,943192237,192526269,897983911,961628039,240232720,627280533,710239542,70255649,261743865,228474833,776408079,304180483,63607040,953297493,758058902,395529997,156010331,825833840,539880795,234683685,52626619,751843490,116909119,62806842,574857555,353417551,40061330,822203768,681051568,490913702,9322961,766631257,124794668,37844313,163524507,729108319,490867505,47035168,682765157,53842115,817965276,757179922,339238384,909741023,150530547,158444563,140949492,993302799,551621442,137578883,475122706,443869843,605400098,689361523,769596520,801661499,474900284,586624857,349960501,134084537,650564083,877097974,379857427,887890124,159436401,133274277,986182139,729720334,568925901,459461496,499309445,493171177,460958750,380694152,168836226,840160881,141116880,225064950,109618190,842341383,85305729,759273275,97369807,669317759,766247510,829017039,550323884,261274540,918239352,29606025,870793828,293683814,378510746,367270918,481292028,813097823,798448487,230791733,899305835,504040630,162510533,479367951,275282274,806951470,462774647,56473153,184659008,905122161,664034750,109726629,59372704,325795100,486860143,843736533,924723613,880348000,801252478,616515290,776142608,284803450,583439582,274826676,6018349,377403437,244041569,527081707,544763288,708818585,354033051,904309832,589922898,673933870,682858433,945260111,899893421,515264973,911685911,9527148,239480646,524126897,48259065,578214879,118677219,786127243,869205770,923276513,937928886,802186160,12198440,638784295,34200904,758925811,185027790,80918046,120604699,610456697,573601211,208296321,49743354,653691911,490750754,674335312,887877110,875880304,308360096,414636410,886100267,8525751,636257427,558338775,500159951,696213291,97268896,364983542,937928436,641582714,586211304,345265657,994704486,443549763,207259440,302122082,166055224,623250998,239642551,476337075,283167364,211328914,68064804,950202136,187552679,18938709,646784245,598764068,538505481,610424991,864445053,390248689,278395191,686098470,935957187,868529577,329970687,804930040,84992079,474569269,810762228,573258936,756464212,155080225,286966169,283614605,19283401,24257676,871831819,612689791,846988741,617120754,971716517,979541482,297910784,991087897,783825907,214821357,689498189,405026419,946731704,609346370,707669156,457703127,957341187,980735523,649367684,791011898,82098966,234729712,105002711,130614285,291032164,193188049,363211260,58108651,100756444,954947696,346032213,863300806,36876722,622610957,289232396,667938985,734886266,395881057,417188702,183092975,887586469,83334648,797819763,100176902,781587414,841864935,371674670,18247584}; inline ll read() { register ll num=0; register char ch=getchar(); while(!isdigit(ch)) { ch=getchar(); } while(isdigit(ch)) { num=(num<<3)+(num<<1)+(ch-'0'); ch=getchar(); } return num; } inline ll readm() { register li num=0; register char ch=getchar(); while(!isdigit(ch)) { ch=getchar(); } while(isdigit(ch)) { num=((num<<3)+(num<<1)+(ch-'0'))%MOD; ch=getchar(); } return num; } inline ll qpow(ll base,ll exponent) { ll res=1; while(exponent) { if(exponent&1) { res=(li)res*base%MOD; } base=(li)base*base%MOD,exponent>>=1; } return res; } inline ll calcFact(ll x) { ll res=factBlock[x/1000000]; for(register int i=x/1000000*1000000+1;i<=x;i++) { res=(li)res*i%MOD; } return res; } namespace Subtask1{ ll p,qcnt,x; ll pw[MAXN]; inline void main() { p=read()-1,qcnt=read(); for(register int i=1;i<=p;i++) { pw[i]=(pw[i-1]+qpow(i,p+1))%MOD; } for(register int i=0;i<qcnt;i++) { printf("%d\n",pw[read()-1]); } } } namespace Subtask2{ ll n,m,qcnt,numer,cur,hi,lo; li res; ll block[22][32768],pw[22][32768],fact[MAXN],finv[MAXN]; inline void setup(ll cnt) { fact[0]=finv[0]=1; block[1][1]=1; block[2][1]=167578608; block[3][1]=192671909; block[4][1]=683753077; block[5][1]=21763235; block[6][1]=791422997; block[7][1]=326153078; block[8][1]=883105292; block[9][1]=84695472; block[10][1]=823499382; block[11][1]=659299615; block[12][1]=359937775; block[13][1]=647360147; block[14][1]=699980812; block[15][1]=695403701; block[16][1]=918327899; block[17][1]=48786078; block[18][1]=285585793; block[19][1]=698289863; block[20][1]=63206045; block[21][1]=995343487; for(register int i=1;i<cnt;i++) { fact[i]=(li)fact[i-1]*i%MOD; } for(register int i=1;i<=21;i++) { pw[i][0]=block[i][0]=1,pw[i][1]=i; for(register int j=1;j<32768;j++) { pw[i][j]=(li)pw[i][j-1]*i%MOD; block[i][j]=(li)block[i][j-1]*block[i][1]%MOD; } } finv[cnt-1]=qpow(fact[cnt-1],MOD-2); for(register int i=cnt-2;i;i--) { finv[i]=(li)finv[i+1]*(i+1)%MOD; } } inline void solve() { if(!m) { return (void)(puts("1")); } numer=1,res=0,hi=n>>15,lo=n&32767; for(register int i=m+1,sgn=1,j=n+1;i;i--,sgn^=1,j--) { cur=(li)block[i][hi]*pw[i][lo]%MOD*numer%MOD*finv[m+1-i]%MOD; res=sgn?res+cur:res-cur+MOD; numer=(li)numer*j%MOD; } printf("%d\n",res%MOD*finv[n+1]%MOD); } inline void main() { setup(200011),qcnt=read(); for(register int i=0;i<qcnt;i++) { n=read(),m=read(),solve(); } } } namespace Subtask3{ ll qcnt,n,m,hi,lo,numer,res,cur; ll block[22][32768],pw[22][32768],finv[22]; inline void setup() { block[1][1]=1; block[2][1]=167578608; block[3][1]=192671909; block[4][1]=683753077; block[5][1]=21763235; block[6][1]=791422997; block[7][1]=326153078; block[8][1]=883105292; block[9][1]=84695472; block[10][1]=823499382; block[11][1]=659299615; block[12][1]=359937775; block[13][1]=647360147; block[14][1]=699980812; block[15][1]=695403701; block[16][1]=918327899; block[17][1]=48786078; block[18][1]=285585793; block[19][1]=698289863; block[20][1]=63206045; block[21][1]=995343487; finv[0]=finv[1]=1; finv[2]=499122177; finv[3]=166374059; finv[4]=291154603; finv[5]=856826403; finv[6]=641926577; finv[7]=376916469; finv[8]=421456191; finv[9]=712324701; finv[10]=370705776; finv[11]=305948985; finv[12]=275056837; finv[13]=405098354; finv[14]=314148269; finv[15]=154042465; finv[16]=945481735; finv[17]=407938109; finv[18]=632701444; finv[19]=33300076; finv[20]=400962745; finv[21]=637054254; for(register int i=1;i<=21;i++) { pw[i][0]=block[i][0]=1,pw[i][1]=i; for(register int j=1;j<32768;j++) { pw[i][j]=(li)pw[i][j-1]*i%MOD; block[i][j]=(li)block[i][j-1]*block[i][1]%MOD; } } } inline void solve() { if(!m) { return (void)(puts("1")); } numer=1,res=0,hi=n>>15,lo=n&32767; for(register int i=m+1,sgn=1,j=n+1;i;i--,sgn^=1,j--) { cur=(li)block[i][hi]*pw[i][lo]%MOD*numer%MOD*finv[m+1-i]%MOD; res=sgn?(res+cur)%MOD:(res-cur+MOD)%MOD; numer=(li)numer*j%MOD; } printf("%d\n",(li)res*qpow(calcFact(n+1),MOD-2)%MOD); } inline void main() { setup(),qcnt=read(); for(register int i=0;i<qcnt;i++) { n=read(),m=read(),solve(); } } } namespace Subtask4{ ll qcnt,n,m,res,cur; ll poly[100][100]={ {1}, {0,499122177,499122177}, {0,582309206,623902721,915057324,873463809}, {0,0,873463809,977447596,977447596,519918934,644699478}, {0,141417950,107449913,842268673,94451940,544875043,965316154,967049217,330148523}, {0,0,353544875,838455934,703623624,535949768,653451447,349558830,851800520,771646351,931434770}, {0,550618909,178158888,58789352,129719774,797050168,796364164,791624030,488052236,941404697,659322198,354368080,243993623}, {0,0,429799652,399743386,554801643,742853433,722665655,404016728,60088290,522271464,226257407,315863991,413266952,110861881,88731284}, {0,70708975,419637300,526847060,645516780,37819976,686120930,268400327,256931840,479065066,996185375,206740503,38492104,987371789,694986290,916901540,754228970}, {0,0,817312564,426355808,1832508,826402119,209769896,439803051,551557285,364677809,974827794,179093010,86072836,94912195,751433324,437960094,280979498,724651150,818313884} }; inline void solve() { n=readm(),m=read(),res=0,cur=1; for(register int i=0;i<=(m<<1);i++) { res=(res+(li)poly[m][i]*cur%MOD)%MOD,cur=(li)cur*n%MOD; } printf("%d\n",res); } inline void main() { qcnt=read(); for(register int i=0;i<qcnt;i++) { solve(); } } } namespace Subtask5{ ll qcnt,n,m; ll dp[2051][2051]; inline void main() { dp[0][0]=1; for(register int i=1;i<=2000;i++) { dp[i][0]=1; for(register int j=1;j<=i;j++) { dp[i][j]=(li)(j+1)*dp[i-1][j]%MOD; dp[i][j]=(dp[i][j]+(li)((i<<1)-1-j)*dp[i-1][j-1]%MOD)%MOD; } } qcnt=read(); for(register int i=0;i<qcnt;i++) { n=read(),m=read(),printf("%d\n",dp[n][m]); } } } int main() { taskId=read(); if(taskId==1) { Subtask1::main(); } if(taskId==2) { Subtask2::main(); } if(taskId==3) { Subtask3::main(); } if(taskId==4) { Subtask4::main(); } if(taskId==5) { Subtask5::main(); } }
- 1
信息
- ID
- 5032
- 时间
- 400ms
- 内存
- 500MiB
- 难度
- 7
- 标签
- 递交数
- 0
- 已通过
- 0
- 上传者