1 条题解
-
0
自动搬运
来自洛谷,原作者为

ViXbob
**搬运于
2025-08-24 22:10:26,当前版本为作者最后更新于2019-05-19 23:48:57,作者可能在搬运后再次修改,您可在原文处查看最新版自动搬运只会搬运当前题目点赞数最高的题解,您可前往洛谷题解查看更多
以下是正文
一开始了,以为二元组连出来的一定是一颗外向树。后来发现有反边。
我索性先来考虑一下外向树的这种情况吧。对于第个点设其子树的和为, 所有点的和为。因为除了子树中的点要比晚抽到外,剩余所有的点都可比早抽到。所以比子树中的所有卡牌都要早抽到的概率为:
$$\begin{aligned}&\frac{w_i}{Sum}\sum_{i=0}^n\left(\frac{Sum-Sw}{Sum}\right)^i\\=&\frac{w_i}{Sum}\times \frac{Sum}{Sw}=\frac{w_i}{Sw}\end{aligned} $$这个只与子树信息有关。我们考虑设计状态表示处理完这个子树,子树中和为的概率和。转移直接背包就好了。
然后考虑反向边:
反向边我们不好直接处理,考虑容斥。反向边的若干个二元组就是一些条件而已我们想要它们都满足,直接大力容斥有:
至少个条件不满足至少一个条件不满足至少两个条件不满足
我们发现至少个不满足就是选择任意条反向边后将这些边反向,另外的边删掉(不考虑这些条件就是至少)。这样会构成一个外向树森林。我们枚举每一条反向边的状态后也可以,复杂度。
考虑优化一下这个过程,我们其实没有必要知道是每条边具体的状态,我们只用考虑最后被反向的反向边的个数,我们直接把这个东西压入状态,设表示处理完的子树后子树和为,被反向的反向边的个数为的概率和。(注意到由反向边相连的子树的大小视为)最终的复杂度为。
实际上我们没有必要最后用第三维状态来统计答案(计算容斥系数),可以直接在转移中就直接考虑容斥系数就好了,选择一条反向边并将其反向实则就是将乘上,然后就可以直接转移了。复杂度。
代码:
/* * 3124.cpp * This file is part of 3124 * * Copyright (C) 2019 - ViXbob * * 3124 is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * 3124 is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with 3124. If not, see <http://www.gnu.org/licenses/>. */ /** * There is no end though there is a start in space. ---Infinity. * It has own power, it ruins, and it goes though there is a start also in the star. ---Finite. * Only the person who was wisdom can read the most foolish one from the history. * The fish that lives in the sea doesn't know the world in the land. * It also ruins and goes if they have wisdom. * It is funnier that man exceeds the speed of light than fish start living in the land. * It can be said that this is an final ultimatum from the god to the people who can fight. * * Steins;Gate */ #include <bits/stdc++.h> #define rep(i, j, k) for(int i = j; i <= k; ++i) #define dep(i, j, k) for(int i = j; i >= k; --i) #define SIZE(x) ((int)x.size()) #define mp(x, y) make_pair(x, y) #define pb(x) push_back(x) #define inv(x) (ksm(x, P - 2)) typedef long long ll; typedef unsigned long long ull; using namespace std; const int maxn = 1e3 + 5; const int P = 998244353; const int inf = 0x3f3f3f3f; inline int read() { char ch = getchar(); int u = 0, f = 1; while(!isdigit(ch)) { if(ch == '-') f = -1; ch = getchar(); } while(isdigit(ch)) { u = u * 10 + ch - 48; ch = getchar(); } return u * f; } int n, a[maxn], b[maxn], c[maxn], s[maxn], f[maxn][maxn * 3], rt, size[maxn], ans, tmp[maxn * 3]; int inv[maxn * 3]; vector<pair<int, int> > G[maxn]; inline int pls(int x, int y) { x += y; return x >= P ? x - P : x; } inline int dec(int x, int y) { x -= y; return x < 0 ? x + P : x; } inline int mul(int x, int y) { return 1ll * x * y % P; } inline int ksm(int x, int k, int rnt = 1) { for(int i = k; i; i >>= 1, x = 1ll * x * x % P) if(i & 1) rnt = 1ll * rnt * x % P; return rnt; } inline void dfs(int x, int fr) { size[x] = 1; f[x][1] = 1ll * a[x] * s[x] % P; f[x][2] = 1ll * b[x] * s[x] % P * 2 % P; f[x][3] = 1ll * c[x] * s[x] % P * 3 % P; for(auto v : G[x]) if(v.first != fr) { dfs(v.first, x); rep(i, 1, size[x] * 3) rep(j, 1, size[v.first] * 3) { int res = 1ll * f[x][i] * f[v.first][j] % P; if(v.second) tmp[i + j] = dec(tmp[i + j], res), tmp[i] = pls(tmp[i], res); else tmp[i + j] = pls(tmp[i + j], res); } size[x] += size[v.first]; rep(i, 1, 3 * size[x]) f[x][i] = tmp[i], tmp[i] = 0; } rep(i, 1, size[x] * 3) f[x][i] = 1ll * f[x][i] * inv[i] % P; } int main() { // freopen("1.in", "r", stdin); // freopen("my.out", "w", stdout); n = read(); rep(i, 1, 3 * n) inv[i] = inv(i); rep(i, 1, n) a[i] = read(), b[i] = read(), c[i] = read(), s[i] = inv(a[i] + b[i] + c[i]); rep(i, 1, n - 1) { int x = read(), y = read(); G[y].pb(mp(x, 1)); G[x].pb(mp(y, 0)); } dfs(1, 1); rep(i, 1, size[1] * 3) ans = pls(ans, f[1][i]); cout << ans << endl; return 0; }
- 1
信息
- ID
- 4382
- 时间
- 1000ms
- 内存
- 500MiB
- 难度
- 7
- 标签
- 递交数
- 0
- 已通过
- 0
- 上传者