1 条题解
-
0
自动搬运
来自洛谷,原作者为

lx_zjk
Hello the cruel world搬运于
2025-08-24 21:57:23,当前版本为作者最后更新于2019-10-31 17:15:19,作者可能在搬运后再次修改,您可在原文处查看最新版自动搬运只会搬运当前题目点赞数最高的题解,您可前往洛谷题解查看更多
以下是正文
这道题目 是和 算法的合集 题目 不难
但是重在细节
首先 如果是次小生成树 有个性质就是他与最小生成树只有一条边不同 那么就枚举加入哪条边 然后 删去原路径上的一条边 然后删去权值最大(实际上应该是最大的次大的)
一开始 看到这道题 感觉和货车运输比较类似 然后就开始做 每次倍增维护路径上最大值 但是发现样例过不了 交上去有
然后开始手搞样例 发现样例他删去的边是路径上的次大边 因为假设加上这条最大边 最小生成树权值和还是原来的和 那么我们考虑维护树上次大和最大值
讲一下维护次大值的思路 就是$max (min(g[u][i - 1], g[f[u][i - 1]][i - 1]), h[u][i - 1], h[f[u][i - 1]][i - 1]))$
然后就是模板了 不过这个模板并没有什么用
#include <cstdio> #include <cstring> #include <cmath> #include <algorithm> #include <iostream> #include <set> #include <map> #include <queue> using namespace std; typedef long long ll; const ll INF = (1ll << 62); #define DEBUG(x) std::cerr << #x << " = " << x << std::endl #define int ll inline ll read() { ll f = 1, x = 0;char ch; do {ch = getchar();if (ch == '-')f = -1;} while (ch > '9' || ch < '0'); do {x = x * 10 + ch - '0';ch = getchar();} while (ch >= '0' && ch <= '9'); return f * x; } const int MAX_N = 100000 + 50; const int MAX_M = 300000 + 50; const int MAX_F = 30 + 5; struct EDGE { int to, next, w; } edge[MAX_M << 1]; int head[MAX_N], cnt; void addedge (int u, int v, int w) { edge[++cnt].to = v; edge[cnt].w = w; edge[cnt].next = head[u]; head[u] = cnt; } int f[MAX_N][MAX_F], g[MAX_N][MAX_F], h[MAX_N][MAX_F], dep[MAX_N]; inline void ckmax (int &x, int y) { x = (x > y ? x : y); } inline void dfs (int u, int fa, int w) { dep[u] = dep[fa] + 1; f[u][0] = fa; g[u][0] = w; h[u][0] = -INF; for (int i = 1; i <= 20; i ++ ) { f[u][i] = f[f[u][i - 1]][i - 1]; g[u][i] = max (g[u][i - 1], g[f[u][i - 1]][i - 1]); h[u][i] = max (h[u][i - 1], h[f[u][i - 1]][i - 1]); if (g[u][i - 1] > g[f[u][i - 1]][i - 1]) h[u][i] = max (h[u][i], g[f[u][i - 1]][i - 1]); else if (g[u][i - 1] < g[f[u][i - 1]][i - 1]) h[u][i] = max (h[u][i], g[u][i - 1]); } for (int i = head[u]; i; i = edge[i].next ) { int v = edge[i].to, w = edge[i].w; if (v == fa) continue; dfs (v, u, w); } } inline int LCA (int x, int y) { if (dep[x] < dep[y]) swap (x, y); for (int i = 20; i >= 0; i -- ) { if (dep[f[x][i]] >= dep[y]) x = f[x][i]; } if (x == y) return x; for (int i = 20; i >= 0; i -- ) { if (f[x][i] != f[y][i]) { x = f[x][i]; y = f[y][i]; } } return f[x][0]; } int n, m, fa[MAX_N], res, sum; struct Node { int u, v, w; bool operator < (const Node & rhs ) const { return w < rhs.w; } } a[MAX_M << 1]; inline int find (int x) { return x == fa[x] ? x : fa[x] = find (fa[x]); } inline void merge (int x, int y) { x = find (x); y = find (y); if (x == y) return; fa[x] = y; } bool vis[MAX_M]; inline void kruskal () { n = read (); m = read (); for (int i = 1; i <= m; i ++ ) { a[i].u = read (); a[i].v = read (); a[i].w = read (); } sort (a + 1, a + m + 1); for (int i = 1; i <= n; i ++ ) fa[i] = i; res = 0; for (int i = 1; i <= m; i ++ ) { if (find (a[i].u) != find (a[i].v)) { vis[i] = 1; res ++ ; merge (a[i].u, a[i].v); sum += a[i].w; addedge (a[i].u, a[i].v, a[i].w); addedge (a[i].v, a[i].u, a[i].w); } if (res == n - 1) break; } res = 0; dfs (1, 0, 0); } inline int qmax (int u, int v, int maxx) { int ans = -INF; for (int i = 18; i >= 0; i -- ) { if (dep[f[u][i]] >= dep[v]) { if (maxx != g[u][i]) ans = max (ans, g[u][i]); else ans = max (ans, h[u][i]); u = f[u][i]; } } return ans; } inline void ckmin (int &x, int y) { x = (x < y ? x : y); } inline void calc () { int ans = INF; for (int i = 1; i <= m; i ++ ) { if (vis[i]) continue; int lca = LCA (a[i].u, a[i].v); int max_u = qmax (a[i].u, lca, a[i].w); int max_v = qmax (a[i].v, lca, a[i].w); ckmin (ans, sum - max (max_u, max_v) + a[i].w); } printf ("%lld\n", ans); } signed main() { kruskal (); calc (); return 0; }
- 1
信息
- ID
- 3143
- 时间
- 1000ms
- 内存
- 512MiB
- 难度
- 6
- 标签
- 递交数
- 0
- 已通过
- 0
- 上传者