1 条题解

  • 0
    @ 2025-8-24 21:34:45

    自动搬运

    查看原文

    来自洛谷,原作者为

    avatar rui_er
    九万里风鹏正举

    搬运于2025-08-24 21:34:44,当前版本为作者最后更新于2025-08-23 16:08:18,作者可能在搬运后再次修改,您可在原文处查看最新版

    自动搬运只会搬运当前题目点赞数最高的题解,您可前往洛谷题解查看更多

    以下是正文


    本文中的二叉搜索树指 BST,它的其他译名包括二叉查找树、二叉排序树等。

    本题加强了数据,把所有暴力建二叉搜索树的题解全卡掉了,我来写一个复杂度正确的笛卡尔树题解。

    笛卡尔树是一棵特殊的二叉树,它的每个节点有两个权值 (xi,yi)(x_i,y_i),满足:

    • 权值 xix_i 构成一棵二叉搜索树。
    • 权值 yiy_i 构成一棵小根堆。

    由题意,我们需要建的树满足以下性质:

    • 泡泡的大小构成一棵二叉搜索树。
    • 泡泡的编号构成一棵小根堆(题面要求依次插入)。

    先对所有泡泡排序,然后跑 P5854 【模板】笛卡尔树 的线性建树方式即可。需要注意的是,本题中的堆权和搜索树权与该题是反过来的。

    时间复杂度 O(nlogn)O(n\log n)

    //By: OIer rui_er
    #include <bits/stdc++.h>
    #define rep(x, y, z) for(int x = (y); x <= (z); ++x)
    #define per(x, y, z) for(int x = (y); x >= (z); --x)
    #define debug(format...) fprintf(stderr, format)
    #define fileIO(s) do {freopen(s".in", "r", stdin); freopen(s".out", "w", stdout);} while(false)
    #define endl '\n'
    using namespace std;
    typedef long long ll;
    
    mt19937 rnd(std::chrono::duration_cast<std::chrono::nanoseconds>(std::chrono::system_clock::now().time_since_epoch()).count());
    int randint(int L, int R) {
        uniform_int_distribution<int> dist(L, R);
        return dist(rnd);
    }
    
    template<typename T> void chkmin(T& x, T y) {if(y < x) x = y;}
    template<typename T> void chkmax(T& x, T y) {if(x < y) x = y;}
    
    template<int mod>
    inline unsigned int down(unsigned int x) {
        return x >= mod ? x - mod : x;
    }
    
    template<int mod>
    struct Modint {
        unsigned int x;
        Modint() = default;
        Modint(unsigned int x) : x(x) {}
        friend istream& operator>>(istream& in, Modint& a) {return in >> a.x;}
        friend ostream& operator<<(ostream& out, Modint a) {return out << a.x;}
        friend Modint operator+(Modint a, Modint b) {return down<mod>(a.x + b.x);}
        friend Modint operator-(Modint a, Modint b) {return down<mod>(a.x - b.x + mod);}
        friend Modint operator*(Modint a, Modint b) {return 1ULL * a.x * b.x % mod;}
        friend Modint operator/(Modint a, Modint b) {return a * ~b;}
        friend Modint operator^(Modint a, int b) {Modint ans = 1; for(; b; b >>= 1, a *= a) if(b & 1) ans *= a; return ans;}
        friend Modint operator~(Modint a) {return a ^ (mod - 2);}
        friend Modint operator-(Modint a) {return down<mod>(mod - a.x);}
        friend Modint& operator+=(Modint& a, Modint b) {return a = a + b;}
        friend Modint& operator-=(Modint& a, Modint b) {return a = a - b;}
        friend Modint& operator*=(Modint& a, Modint b) {return a = a * b;}
        friend Modint& operator/=(Modint& a, Modint b) {return a = a / b;}
        friend Modint& operator^=(Modint& a, int b) {return a = a ^ b;}
        friend Modint& operator++(Modint& a) {return a += 1;}
        friend Modint operator++(Modint& a, int) {Modint x = a; a += 1; return x;}
        friend Modint& operator--(Modint& a) {return a -= 1;}
        friend Modint operator--(Modint& a, int) {Modint x = a; a -= 1; return x;}
        friend bool operator==(Modint a, Modint b) {return a.x == b.x;}
        friend bool operator!=(Modint a, Modint b) {return !(a == b);}
    };
    
    const int N = 3e5 + 5;
    
    int n, a[N], idx[N], L[N], R[N], stk[N], top, dis[N];
    
    void dfs1(int u) {
        if(L[u]) {
            dis[L[u]] = dis[u] + 1;
            dfs1(L[u]);
        }
        if(R[u]) {
            dis[R[u]] = dis[u] + 1;
            dfs1(R[u]);
        }
    }
    
    void dfs2(int u) {
        if(L[u]) dfs2(L[u]);
        if(R[u]) dfs2(R[u]);
        cout << a[u] << endl;
    }
    
    int main() {
        ios::sync_with_stdio(false);
        cin.tie(0); cout.tie(0);
        cin >> n;
        rep(i, 1, n) cin >> a[i];
        rep(i, 1, n) idx[i] = i;
        sort(idx + 1, idx + 1 + n, [&](int x, int y) {
            return a[x] < a[y];
        });
        stk[++top] = idx[1];
        rep(i, 2, n) {
            while(top && stk[top] > idx[i]) --top;
            if(top) {
                L[idx[i]] = R[stk[top]];
                R[stk[top]] = idx[i];
            }
            else L[idx[i]] = stk[1];
            stk[++top] = idx[i];
        }
        dis[1] = 1;
        dfs1(1);
        cout << "deep=" << *max_element(dis + 1, dis + 1 + n) << endl;
        dfs2(1);
        return 0;
    }
    
    • 1

    信息

    ID
    1190
    时间
    1000ms
    内存
    125MiB
    难度
    3
    标签
    递交数
    0
    已通过
    0
    上传者