1 条题解
-
0
自动搬运
来自洛谷,原作者为

rui_er
九万里风鹏正举搬运于
2025-08-24 21:34:44,当前版本为作者最后更新于2025-08-23 16:08:18,作者可能在搬运后再次修改,您可在原文处查看最新版自动搬运只会搬运当前题目点赞数最高的题解,您可前往洛谷题解查看更多
以下是正文
本文中的二叉搜索树指 BST,它的其他译名包括二叉查找树、二叉排序树等。
本题加强了数据,把所有暴力建二叉搜索树的题解全卡掉了,我来写一个复杂度正确的笛卡尔树题解。
笛卡尔树是一棵特殊的二叉树,它的每个节点有两个权值 ,满足:
- 权值 构成一棵二叉搜索树。
- 权值 构成一棵小根堆。
由题意,我们需要建的树满足以下性质:
- 泡泡的大小构成一棵二叉搜索树。
- 泡泡的编号构成一棵小根堆(题面要求依次插入)。
先对所有泡泡排序,然后跑 P5854 【模板】笛卡尔树 的线性建树方式即可。需要注意的是,本题中的堆权和搜索树权与该题是反过来的。
时间复杂度 。
//By: OIer rui_er #include <bits/stdc++.h> #define rep(x, y, z) for(int x = (y); x <= (z); ++x) #define per(x, y, z) for(int x = (y); x >= (z); --x) #define debug(format...) fprintf(stderr, format) #define fileIO(s) do {freopen(s".in", "r", stdin); freopen(s".out", "w", stdout);} while(false) #define endl '\n' using namespace std; typedef long long ll; mt19937 rnd(std::chrono::duration_cast<std::chrono::nanoseconds>(std::chrono::system_clock::now().time_since_epoch()).count()); int randint(int L, int R) { uniform_int_distribution<int> dist(L, R); return dist(rnd); } template<typename T> void chkmin(T& x, T y) {if(y < x) x = y;} template<typename T> void chkmax(T& x, T y) {if(x < y) x = y;} template<int mod> inline unsigned int down(unsigned int x) { return x >= mod ? x - mod : x; } template<int mod> struct Modint { unsigned int x; Modint() = default; Modint(unsigned int x) : x(x) {} friend istream& operator>>(istream& in, Modint& a) {return in >> a.x;} friend ostream& operator<<(ostream& out, Modint a) {return out << a.x;} friend Modint operator+(Modint a, Modint b) {return down<mod>(a.x + b.x);} friend Modint operator-(Modint a, Modint b) {return down<mod>(a.x - b.x + mod);} friend Modint operator*(Modint a, Modint b) {return 1ULL * a.x * b.x % mod;} friend Modint operator/(Modint a, Modint b) {return a * ~b;} friend Modint operator^(Modint a, int b) {Modint ans = 1; for(; b; b >>= 1, a *= a) if(b & 1) ans *= a; return ans;} friend Modint operator~(Modint a) {return a ^ (mod - 2);} friend Modint operator-(Modint a) {return down<mod>(mod - a.x);} friend Modint& operator+=(Modint& a, Modint b) {return a = a + b;} friend Modint& operator-=(Modint& a, Modint b) {return a = a - b;} friend Modint& operator*=(Modint& a, Modint b) {return a = a * b;} friend Modint& operator/=(Modint& a, Modint b) {return a = a / b;} friend Modint& operator^=(Modint& a, int b) {return a = a ^ b;} friend Modint& operator++(Modint& a) {return a += 1;} friend Modint operator++(Modint& a, int) {Modint x = a; a += 1; return x;} friend Modint& operator--(Modint& a) {return a -= 1;} friend Modint operator--(Modint& a, int) {Modint x = a; a -= 1; return x;} friend bool operator==(Modint a, Modint b) {return a.x == b.x;} friend bool operator!=(Modint a, Modint b) {return !(a == b);} }; const int N = 3e5 + 5; int n, a[N], idx[N], L[N], R[N], stk[N], top, dis[N]; void dfs1(int u) { if(L[u]) { dis[L[u]] = dis[u] + 1; dfs1(L[u]); } if(R[u]) { dis[R[u]] = dis[u] + 1; dfs1(R[u]); } } void dfs2(int u) { if(L[u]) dfs2(L[u]); if(R[u]) dfs2(R[u]); cout << a[u] << endl; } int main() { ios::sync_with_stdio(false); cin.tie(0); cout.tie(0); cin >> n; rep(i, 1, n) cin >> a[i]; rep(i, 1, n) idx[i] = i; sort(idx + 1, idx + 1 + n, [&](int x, int y) { return a[x] < a[y]; }); stk[++top] = idx[1]; rep(i, 2, n) { while(top && stk[top] > idx[i]) --top; if(top) { L[idx[i]] = R[stk[top]]; R[stk[top]] = idx[i]; } else L[idx[i]] = stk[1]; stk[++top] = idx[i]; } dis[1] = 1; dfs1(1); cout << "deep=" << *max_element(dis + 1, dis + 1 + n) << endl; dfs2(1); return 0; }
- 1
信息
- ID
- 1190
- 时间
- 1000ms
- 内存
- 125MiB
- 难度
- 3
- 标签
- 递交数
- 0
- 已通过
- 0
- 上传者