1 条题解
-
0
自动搬运
来自洛谷,原作者为

Kelin
这个家伙太菜,没什么可以留下的搬运于
2025-08-24 21:25:11,当前版本为作者最后更新于2017-08-04 21:28:22,作者可能在搬运后再次修改,您可在原文处查看最新版自动搬运只会搬运当前题目点赞数最高的题解,您可前往洛谷题解查看更多
以下是正文
题目大意:给定n和m,求Σ(1<=i<=n)Σ(1<=j<=m)GCD(i,j)*2-1
i和j的限制不同,传统的线性筛法失效了,这里我们考虑容斥原理
令f[x]为GCD(i,j)=x的数对(i,j)的个数,这个不是很好求
我们令g[x]为存在公因数=x的数对(i,j)的个数(注意不是最大公因数!),显然有g[x]=(n/x)*(m/x)
但是这些数对中有一些的最大公因数为2d,3d,4d,我们要把他们减掉
于是最终f[x]=(n/x)*(m/x)-Σ(2*x<=i*x<=min(m,n))f[i*x]
从后向前枚举x即可
时间复杂度O(nlogn)
注意计算g[x]的时候(n/x)*(m/x)可能会乘爆 会挂掉一个点
#include<cstdio> #define re register int const int N=100010; int n,m;long long f[N],ans; int main(){ scanf("%d%d",&n,&m); if(n>m)n^=m^=n^=m; for(re i=n;i;--i){ f[i]=(long long)(n/i)*(m/i); for(re j=i<<1;j<=n;j+=i)f[i]-=f[j]; ans+=((i<<1)-1)*f[i]; } printf("%lld",ans); return 0; }
- 1
信息
- ID
- 441
- 时间
- 1000ms
- 内存
- 128MiB
- 难度
- 5
- 标签
- 递交数
- 0
- 已通过
- 0
- 上传者