1 条题解
-
0
自动搬运
来自洛谷,原作者为

lzn
**搬运于
2025-08-24 21:24:49,当前版本为作者最后更新于2013-07-31 22:41:54,作者可能在搬运后再次修改,您可在原文处查看最新版自动搬运只会搬运当前题目点赞数最高的题解,您可前往洛谷题解查看更多
以下是正文
《又是毕业季II》解题报告
By lzn 数论常规题。
一开始很容易想到枚举n个数取k个的所有组合,然后分别用辗转相除法求最大公约数,但是复杂度明显不符合要求,于是必须换一种思路。
我们想到,k个数的公约数含义就是这k个数均含有某个因数,如果我们把所有数的因数全部求出来,发现有k个数均含有某个因数,那么这个数必然是这k个数的公约数。其中找出最大的就是它们的最大公约数。但是要如何高效的做到这点呢?考虑到对于k=1,2……,n都要求出,我们可以这么做:
* 1、 求出每个因数出现的次数。
* 2、 对于每个次数记录最大的因数。
* 3、 根据f[k]=max(f[k],f[k+1])逆向递推。(如果已经知道k个数的最大公约数是m,那么l(l<k)个数的最大公约数一定大于等于m)。
具体为什么这么做,留给大家自己思考啦~~
算法复杂度o(n*sqrt(inf))。
- 1
信息
- ID
- 408
- 时间
- 1000ms
- 内存
- 125MiB
- 难度
- 4
- 标签
- 递交数
- 0
- 已通过
- 0
- 上传者