1 条题解
-
0
自动搬运
来自洛谷,原作者为

fkxr
看主页搬运于
2025-08-24 23:13:57,当前版本为作者最后更新于2025-05-16 14:36:03,作者可能在搬运后再次修改,您可在原文处查看最新版自动搬运只会搬运当前题目点赞数最高的题解,您可前往洛谷题解查看更多
以下是正文
怎么全是单调栈题解?那我写一篇 ST 表二分的吧。
枚举 ,计算最小值是 时的区间最大长度(ST 表二分向前后找),取 就是答案。
code:
//Do not hack it // @author fkxr(luogu uid=995934) #include <bits/stdc++.h> #define endl cerr<<"------------------I Love Sqrt Decomposition------------------\n"; #define int long long using namespace std; #ifdef __linux__ #define gc getchar_unlocked #define pc putchar_unlocked #else #define gc getchar #define pc putchar #endif #define ds(x) (x=='\r'||x=='\n'||x==' ') #define MAX 20 namespace fastIO { template<typename T>inline void r(T& a) { a = 0; char ch = gc(); bool ok = 0; for (; ch < '0' || ch>'9';)ok ^= (ch == '-'), ch = gc(); for (; ch >= '0' && ch <= '9';)a = (a << 1) + (a << 3) + (ch ^ 48), ch = gc(); if (ok)a = -a; } template<typename T>inline void w(T a) { if (a == 0) { pc('0'); return; }static char ch[MAX]; int till = 0; if (a < 0) { pc('-'); for (; a;)ch[till++] = -(a % 10), a /= 10; } else for (; a;)ch[till++] = a % 10, a /= 10; for (; till;)pc(ch[--till] ^ 48); } struct Srr { inline Srr operator>>(int& a) { r(a); return{}; } inline Srr operator>>(char& ch) { ch = gc(); for (; ds(ch);)ch = gc(); return{}; } inline Srr operator>>(string& s) { s = ""; char ch = gc(); for (; ds(ch);)ch = gc(); for (; !(ds(ch) || ch == EOF);) { s.push_back(ch); ch = gc(); }return{}; } template<typename T>inline Srr operator<<(T& a) { r(a); return{}; } inline void is(int n, string& s) { s = ""; char ch = gc(); for (; ds(ch);)ch = gc(); for (; n--;) { s.push_back(ch); ch = gc(); } } }in; struct Sww { inline Sww operator<<(const int a) { w(a); return{}; } inline Sww operator<<(const char ch) { pc(ch); return{}; } inline Sww operator<<(const string s) { for (int i = 0; i < s.size(); i++)pc(s[i]); return{}; } template<typename T>inline Sww operator>>(const T a) { w(a); return{}; } }out; }using fastIO::in; using fastIO::out; #undef ds #define eout cerr namespace Maths { const bool __is_P[] = { 0,0,1,1,0,1,0,1,0,0,0,1,0,1,0,0,0,1,0,1,0,0,0,1,0,0,0,0,0,1 }; inline bool IP1(const int a) { if (a <= 29)return __is_P[a]; if (a % 2 == 0 || a % 3 == 0 || a % 5 == 0)return 0; for (int i = 6;; i += 6) { if (((i + 1) * (i + 1)) > a)return 1; if (a % (i + 1) == 0)return 0; if (((i + 5) * (i + 5)) > a)return 1; if (a % (i + 5) == 0)return 0; } } #define times(a,b,m) (c=(unsigned long long)a*b-(unsigned long long)((long double)a/m*b+0.5L)*m,c<m?c:m+c) inline int power(int a, int b, const int mod = -1) { unsigned long long c; int ans = 1; if (mod == -1) { for (; b;) { if (b & 1)ans *= a; b >>= 1; a *= a; }return ans; }for (; b;) { if (b & 1)ans = times(ans, a, mod); b >>= 1; a = times(a, a, mod); }return ans; } const int Suk[] = { 2,325,9375,28178,450775,9780504,1795265022 }; inline bool chk(const int n, int a, int b, int x) { if (x >= n) return 1; unsigned long long c; int v = power(x, a, n); if (v == 1)return 1; int j = 1; while (j <= b) { if (v == n - 1)break; v = times(v, v, n); j++; }if (j > b)return 0; return 1; } inline bool IP(int n) { if (n < 3 || n % 2 == 0)return n == 2; if (n <= 1e6) { return IP1(n); } else { int a = n - 1, b = 0; while (a % 2 == 0)a >>= 1, b++; for (int k : Suk)if (!chk(n, a, b, k))return 0; return 1; } } #undef times } using Maths::power; using Maths::IP; namespace exs{ #define _4x _4x #ifdef _4x int dx[]={1,-1,0,0},dy[]={0,0,1,-1}; #else int dx[]={1,0,-1,-1,1,1,0,-1},dy[]={1,1,1,0,0,-1,-1,-1}; #endif template<typename T,typename T1,typename T2>inline bool rg(T l,T1 r,T2 x){return l<=x&&x<=r;} inline bool emc(const int&a,const int&b){return a>b;} }using namespace exs; //#define BIT BIT #ifdef BIT namespace BIT {//下标从1开始 #define maxn 100005 struct ds {//打死要记住初始化 ds.n int c0[maxn], c1[maxn], n; inline void Add(int* c, int p, int v) { for (; p <= n; p += p & -p)c[p] += v; } inline int Sum(int* c, int p) { int t = 0; for (; p; p -= p & -p)t += c[p]; return t; } inline int sum(int l, int r) { return Sum(c0, r) * r - Sum(c1, r) - Sum(c0, l - 1) * (l - 1) + Sum(c1, l - 1); } inline void add(int l, int r, int v) { Add(c0, l, v); Add(c0, r + 1, -v); Add(c1, l, (l - 1) * v); Add(c1, r + 1, -r * v); } inline void init(int* c, int len) { int last = 0; for (int i = 1; i <= len; i++) { last = c[i] - last; Add(c0, i, last); Add(c1, i, last * (i - 1)); last = c[i]; } } }; #undef maxn }using namespace BIT; #endif #define ST ST #ifdef ST namespace ST {//下标从1开始 struct st { #define maxn 300005 #define bq min int lg[maxn], f[20][maxn]; inline void init(int*c, int len) { for (int i = 2; i <= len; i++)lg[i] = lg[i >> 1] + 1; for (int i = 1; i <= len; i++)f[0][i] = c[i]; for (int j = 1; (1 << j) <= len; j++) { for (int i = 1; i + (1 << j) - 1 <= len; i++)f[j][i] = bq(f[j - 1][i], f[j - 1][i + (1 << (j - 1))]); } } inline int q(int l, int r) { int j = lg[r - l + 1]; return bq(f[j][l], f[j][r - (1 << j) + 1]); } }; #undef maxn #undef bq }using namespace ST; #endif st t; int a[300005]; signed main() { int n; in>>n; a[1]=a[n+2]=0; for(int i=2;i<=n+1;i++) in>>a[i]; t.init(a,n+2); int ans=0; for(int i=2;i<=n+1;i++){ int L=i,l=1,r=i; for(;l<=r;){ int mid=l+r>>1; if(t.q(mid,i)!=a[i]) l=mid+1; else r=mid-1,L=mid; } int R=i;l=i,r=n+1; for(;l<=r;){ int mid=l+r>>1; if(t.q(i,mid)!=a[i]) r=mid-1; else l=mid+1,R=mid; } ans=max(ans,a[i]*(R-L+1)); } out<<ans<<'\n'; return 0; }时间复杂度明显是 。
- 1
信息
- ID
- 12099
- 时间
- 2000ms
- 内存
- 512MiB
- 难度
- 3
- 标签
- 递交数
- 0
- 已通过
- 0
- 上传者