1 条题解

  • 0
    @ 2025-8-24 23:13:50

    自动搬运

    查看原文

    来自洛谷,原作者为

    avatar yihang2011
    还有诗和远方的田野

    搬运于2025-08-24 23:13:50,当前版本为作者最后更新于2025-06-10 12:40:41,作者可能在搬运后再次修改,您可在原文处查看最新版

    自动搬运只会搬运当前题目点赞数最高的题解,您可前往洛谷题解查看更多

    以下是正文


    P12225 [蓝桥杯 2023 国 Java B] 游戏

    看没有 ST 表的,写一个。

    首先,是 ST 表板子求区间最大最小值,然后对于每个长度为 kk 的区间,最大值记为 PiP_i, 最小值记为 QiQ_i,题目要求的期望就是这玩意:

    $$\sum_{i = 1}^{n - k + 1} \sum_{j = 1}^{n - k + 1} \frac{1}{(n - k + 1) ^ 2}(P_i - Q_j) $$

    然后就稍微化简一下就好了:

    $$\begin{aligned} & \sum_{i = 1}^{n - k + 1} \sum_{j = 1}^{n - k + 1} \frac{1}{(n - k + 1) ^ 2}(P_i - Q_j) \\ = & \frac{1}{(n - k + 1) ^ 2} \sum_{i = 1}^{n - k + 1} \sum_{j = 1}^{n - k + 1} (P_i - Q_j) \\ = & \frac{1}{(n - k + 1) ^ 2}[(n - k + 1)\sum_{i = 1}^{n - k + 1}P_i - (n - k + 1)\sum_{i = 1}^{n - k + 1}Q_i] \\ = & \frac{1}{n - k + 1}(\sum_{i = 1}^{n - k + 1}P_i - \sum_{i = 1}^{n - k + 1}Q_i) \end{aligned} $$

    所以最后只需要记录 i=1nk+1Pi\sum_{i = 1}^{n - k + 1}P_ii=1nk+1Qi\sum_{i = 1}^{n - k + 1}Q_i 即最大值和以及最小值和就行了。

    时间复杂度 O(nlogn)\mathcal{O}(n \log n),能过的。

    当然,不开那个什么还是会见祖宗的。

    #include <bits/stdc++.h>
    using namespace std;
    #define rep(i, l, r) for (int i = l; i <= r; i++) 
    #define rrep(i, r, l) for (int i = r; i >= l; i--)
    #define lrep(i, from, nxt) for (int i = from; i; i = nxt)
    #define arep(x, s) for (auto &x : s)
    #define pb(x) push_back(x)
    #define mp(x, y) make_pair(x, y)
    #define pqueue priority_queue
    #define umap unordered_map
    using ll = long long;
    
    int rd() {
        int x = 0, f = 1; char ch = getchar();
        while (ch < '0' || ch > '9') {
            if (ch == '-') {
                f = -1;
            }
            ch = getchar();
        }
        while (ch >= '0' && ch <= '9') {
            x = x * 10 + ch - '0', ch = getchar();
        }
        return x * f;
    }
    
    constexpr int N = 1e5 + 10;
    ll n, k, mx[N][25], mn[N][25], lg[N], sp, sq;
    
    int main() {
        n = rd(), k = rd();
        lg[0] = -1;
        rep(i, 1, n) {
            mx[i][0] = mn[i][0] = rd();
            lg[i] = lg[i / 2] + 1;
        }
        rep(j, 1, 20) {
            rep(i, 1, n - (1 << j) + 1) {
                mx[i][j] = max(mx[i][j - 1], mx[i + (1 << (j - 1))][j - 1]);
                mn[i][j] = min(mn[i][j - 1], mn[i + (1 << (j - 1))][j - 1]);
            }
        }
        rep(i, 1, n - k + 1) {
            int l = i, r = i + k - 1, s = lg[k];
            sp += max(mx[l][s], mx[r - (1 << s) + 1][s]);
            sq += min(mn[l][s], mn[r - (1 << s) + 1][s]);
        }
        printf("%.2lf\n", 1.0 * (sp - sq) / (n - k + 1));
        return 0;
    }
    

    Java 的:

    import java.util.*;
    import java.io.*;
    
    public class Main {
        static final int N = 100010;
        static long n, k, sp, sq;
        static long[][] mx = new long[N][25];
        static long[][] mn = new long[N][25];
        static int[] lg = new int[N];
    
        public static void main(String[] args) {
            Scanner scanner = new Scanner(System.in);
            n = scanner.nextInt();
            k = scanner.nextInt();
            lg[0] = -1;
            for (int i = 1; i <= n; i++) {
                mx[i][0] = mn[i][0] = scanner.nextInt();
                lg[i] = lg[i / 2] + 1;
            }
            for (int j = 1; j <= 20; j++) {
                for (int i = 1; i + (1 << j) - 1 <= n; i++) {
                    mx[i][j] = Math.max(mx[i][j - 1], mx[i + (1 << (j - 1))][j - 1]);
                    mn[i][j] = Math.min(mn[i][j - 1], mn[i + (1 << (j - 1))][j - 1]);
                }
            }
            for (int i = 1; i <= n - k + 1; i++) {
                int l = i, r = i + (int) k - 1, s = lg[(int) k];
                sp += Math.max(mx[l][s], mx[r - (1 << s) + 1][s]);
                sq += Math.min(mn[l][s], mn[r - (1 << s) + 1][s]);
            }
            System.out.printf("%.2f\n", 1.0 * (sp - sq) / (n - k + 1));
            scanner.close();
        }
    }
    

    对了,一开始我写单调队列不小心卡了一个最优解。

    • 1

    信息

    ID
    12085
    时间
    1000ms
    内存
    512MiB
    难度
    4
    标签
    递交数
    0
    已通过
    0
    上传者