1 条题解
-
0
自动搬运
来自洛谷,原作者为

Purslane
AFO搬运于
2025-08-24 23:07:43,当前版本为作者最后更新于2024-12-28 22:27:06,作者可能在搬运后再次修改,您可在原文处查看最新版自动搬运只会搬运当前题目点赞数最高的题解,您可前往洛谷题解查看更多
以下是正文
Solution
首先,声称答案为边集对称差的大小。显然这是答案的下界,我们需要构造一种方案使得它成立。
(这种思想的好处在于,整道题直接变成了一道构造题,可以用一些数据结构手段解决,而不是飘忽不定的最优化题)
显然,每次删掉一个不在最终边集里面的边,将树分为两个联通块。由于最终是联通的,所以一定能找到一条未加入的、连接两个联通块的边。
考虑加速该流程。设最终边集的边将图连成若干个联通块,如下图所示(红色的边表示最终边集中的边)

按照深度考虑每个联通块。显然,一定有一条边,一个端点在这个联通块里,另一个端点在这个联通块外。
由于我们是按照深度考虑联通块的,所以每次选择的联通块所在子树内所有节点都在这个联通块里。我们可以在联通块的根处维护所有未被加入的边。断掉联通块的根和其原树上的父亲的连边,并且选择另一条边合并到树上,这相当于合并两个联通块。使用启发式合并即可做到 (我写了个
set,是双 的,但是过了)#include<bits/stdc++.h> #define ffor(i,a,b) for(int i=(a);i<=(b);i++) #define roff(i,a,b) for(int i=(a);i>=(b);i--) using namespace std; const int MAXN=1e5+10; int n,fa[MAXN],dep[MAXN],ff[MAXN]; set<pair<int,int>> g,t; vector<int> G[MAXN]; int find(int k) {return (fa[k]==k)?k:(fa[k]=find(fa[k]));} set<pair<int,int>> st[MAXN]; void merge(set<pair<int,int>> &u,set<pair<int,int>>& v) { if(u.size()<v.size()) swap(u,v); for(auto pr:v) u.insert(pr); v.clear(); return ; } void dfs(int u,int f) { dep[u]=dep[f]+1,ff[u]=f; for(auto v:G[u]) if(v!=f) { if(t.find({min(v,u),max(u,v)})!=t.end()) fa[v]=u; else fa[v]=v; dfs(v,u); } return ; } vector<pair<pair<int,int>,pair<int,int>>> ans; struct INFO {int dep,u;}; bool operator <(INFO A,INFO B) {return A.dep<B.dep;} int main() { ios::sync_with_stdio(false),cin.tie(0),cout.tie(0); cin>>n; ffor(i,1,n-1) { int u,v; cin>>u>>v,u++,v++; G[u].push_back(v),G[v].push_back(u),g.insert({min(u,v),max(u,v)}); } ffor(i,1,n-1) { int u,v; cin>>u>>v,u++,v++,t.insert({min(u,v),max(u,v)}); } fa[1]=1,dfs(1,0); for(auto pr:t) { int u=pr.first,v=pr.second; if(find(u)!=find(v)) st[find(u)].insert({u,v}),st[find(v)].insert({u,v}); } priority_queue<INFO> q; ffor(i,1,n) if(find(i)==i) q.push({dep[i],i}); while(!q.empty()) { int u=q.top().u,x1=-1,x2=-1; if(u==1) break ; q.pop(); while(1) { auto pr=*st[u].begin(); st[u].erase(pr); x1=pr.first,x2=pr.second; if(find(x1)!=find(x2)) break ; } if(find(x1)!=u) swap(x1,x2); ans.push_back({{ff[u]-1,u-1},{x1-1,x2-1}}); merge(st[find(x2)],st[find(u)]),fa[u]=find(x2); } cout<<ans.size()<<'\n'; for(auto pr:ans) cout<<pr.first.first<<' '<<pr.first.second<<' '<<pr.second.first<<' '<<pr.second.second<<'\n'; return 0; }
- 1
信息
- ID
- 11234
- 时间
- 2000ms
- 内存
- 1024MiB
- 难度
- 6
- 标签
- 递交数
- 0
- 已通过
- 0
- 上传者