1 条题解
-
0
自动搬运
来自洛谷,原作者为

rui_er
九万里风鹏正举搬运于
2025-08-24 22:59:52,当前版本为作者最后更新于2024-06-21 21:16:14,作者可能在搬运后再次修改,您可在原文处查看最新版自动搬运只会搬运当前题目点赞数最高的题解,您可前往洛谷题解查看更多
以下是正文
我让 cz 搬这道题,cz 给搬了,于是来写个题解(
考虑一个朴素的贪心:每次选择一个到根路径价值和最大的叶子,将价值和累加进答案,并把这条链价值清零。
这个贪心的正确性显然(可以交换法证明),很容易用数据结构维护做到 或 。
但是这样太不优美了,而且数据结构比较难写,于是考虑一个更优的做法。
定义路径权值为路径的价值和,对树进行长链剖分。容易发现,贪心的算法流程等价于每次选择权值最大的一条长链,因此答案即为前 大的长链的权值之和,可以做到 。
//By: OIer rui_er #include <bits/stdc++.h> #define rep(x, y, z) for(int x = (y); x <= (z); ++x) #define per(x, y, z) for(int x = (y); x >= (z); --x) #define debug(format...) fprintf(stderr, format) #define fileIO(s) do {freopen(s".in", "r", stdin); freopen(s".out", "w", stdout);} while(false) #define endl '\n' using namespace std; typedef long long ll; mt19937 rnd(std::chrono::duration_cast<std::chrono::nanoseconds>(std::chrono::system_clock::now().time_since_epoch()).count()); int randint(int L, int R) { uniform_int_distribution<int> dist(L, R); return dist(rnd); } template<typename T> void chkmin(T& x, T y) {if(x > y) x = y;} template<typename T> void chkmax(T& x, T y) {if(x < y) x = y;} template<int mod> inline unsigned int down(unsigned int x) { return x >= mod ? x - mod : x; } template<int mod> struct Modint { unsigned int x; Modint() = default; Modint(unsigned int x) : x(x) {} friend istream& operator>>(istream& in, Modint& a) {return in >> a.x;} friend ostream& operator<<(ostream& out, Modint a) {return out << a.x;} friend Modint operator+(Modint a, Modint b) {return down<mod>(a.x + b.x);} friend Modint operator-(Modint a, Modint b) {return down<mod>(a.x - b.x + mod);} friend Modint operator*(Modint a, Modint b) {return 1ULL * a.x * b.x % mod;} friend Modint operator/(Modint a, Modint b) {return a * ~b;} friend Modint operator^(Modint a, int b) {Modint ans = 1; for(; b; b >>= 1, a *= a) if(b & 1) ans *= a; return ans;} friend Modint operator~(Modint a) {return a ^ (mod - 2);} friend Modint operator-(Modint a) {return down<mod>(mod - a.x);} friend Modint& operator+=(Modint& a, Modint b) {return a = a + b;} friend Modint& operator-=(Modint& a, Modint b) {return a = a - b;} friend Modint& operator*=(Modint& a, Modint b) {return a = a * b;} friend Modint& operator/=(Modint& a, Modint b) {return a = a / b;} friend Modint& operator^=(Modint& a, int b) {return a = a ^ b;} friend Modint& operator++(Modint& a) {return a += 1;} friend Modint operator++(Modint& a, int) {Modint x = a; a += 1; return x;} friend Modint& operator--(Modint& a) {return a -= 1;} friend Modint operator--(Modint& a, int) {Modint x = a; a -= 1; return x;} friend bool operator==(Modint a, Modint b) {return a.x == b.x;} friend bool operator!=(Modint a, Modint b) {return !(a == b);} }; const int N = 2e5 + 5; int n, k, a[N], fa[N], son[N], vis[N]; ll val[N], ans; vector<int> e[N]; vector<ll> v; void dfs(int u, int f) { fa[u] = f; for(int v : e[u]) { if(v == f) continue; dfs(v, u); if(val[v] > val[son[u]]) son[u] = v; } val[u] = val[son[u]] + a[u]; } int main() { ios::sync_with_stdio(false); cin.tie(0); cout.tie(0); cin >> n >> k; rep(i, 1, n) cin >> a[i]; rep(i, 1, n - 1) { int u, v; cin >> u >> v; e[u].push_back(v); e[v].push_back(u); } dfs(1, 0); rep(i, 1, n) vis[son[i]] = 1; rep(i, 1, n) if(!vis[i]) v.push_back(val[i]); nth_element(v.begin(), v.begin() + k, v.end(), greater<ll>()); rep(i, 0, min(k, (int)v.size()) - 1) ans += v[i]; cout << ans << endl; return 0; }
- 1
信息
- ID
- 10411
- 时间
- 1000ms
- 内存
- 512MiB
- 难度
- 5
- 标签
- 递交数
- 0
- 已通过
- 0
- 上传者